МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Казанский государственный аграрный университет» (ФГБОУ ВО КАЗАНСКИЙ ГАУ)

Факультет лесного хозяйства и экологии Кафедра лесоводства и лесных культур

УТВЕРЖДАЮ

Проректор но учебновоспитательной работе и молодёжной политике, доцент

А.В. Дмитриев

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ по дисциплине

Биотехнология и генная инженерия в лесокультурном производстве (Оценочные средства и методические материалы)

приложение к рабочей программе дисциплины

Направление подготовки 35.04.01 Лесное дело

Направленность (профиль) подготовки Лесные культуры, селекция, семеноводство

> Форма обучения очная, заочная

<u>ДОЦЕНТ</u> , К.СХ.Н., <u>ДОЦЕНТ</u> Должность, ученая степень, ученое звание	Подпись	Петрова Гузель Анисовна Ф.И.О.
Оценочные средства обсуждени культур «26» апреля 2023 года		и кафедры лесоводства и лесных
Заведующий кафедрой: <u>К.сх.н, доцент</u> Должность, ученая степень, ученое звание	J. <u>Детр</u> .	<u>Петрова Гузель Анисовна</u> Ф.И.О.
Рассмотрена и одобрена на засе ства и экологии «2» мая 2023 го		иссии Факультета лесного хозяй-
Председатель методической ко доцент, к.сх.н, доцент Должность, ученая степень, ученое звание	Миссии:	Мухаметшина Айгуль <u>Рамилевна</u> Ф.и.о.
Согласовано: <u>Декан</u> Протокол ученого совета факу:	льтета № 7 от «4» мая 202	<u>Гафиятов Ренат Халитович</u> Ф.И.О. 3 года

Составитель:

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения ОПОП бакалавриата по направлению подготовки 35.04.01 «Лесное дело», обучающийся должен овладеть следующими результатами обучения по дисциплине «Биотехнология и генная инженерия в лесокультурном производстве»:

Компетенция	Индикатор дости-	Перечень планируемых результатов
	жения компетенции	обучения по дисциплине
ПК-3.	ПК -3.2.	Знать: подходы применения методов био-
Способен анализиро-	Применяет резуль-	технологии и генной инженерии в научно-
вать полученные экспериментальные	таты научно- исследовательской	исследовательской деятельности при управлении лесокультурным процессом об-
данные, подготовить	деятельности при	ласти их функционального использования,
научно-технические	управлении объек-	охраны и защиты
отчеты, публикации,	тами лесного хозяй-	Уметь: применять методы биотехнологии
применять результа-	ства в области их	и генной инженерии в научно-
ты научно-	функционального	исследовательской деятельности при
исследовательской	использования,	управлении лесокультурным процессом об-
деятельности при	охраны и защиты	ласти их функционального использования,
управлении объекта-		охраны и защиты
ми лесного хозяйства		Владеть: способностью применять методы
в области их функ-		биотехнологии и генной инженерии в науч-
ционального исполь-		но-исследовательской деятельности при
зования, охраны и		управлении лесокультурным процессом об-
защиты		ласти их функционального использования,
		охраны и защиты

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Таблица 2.1 - Показатели и критерии определения уровня сформированности компетенций

она сформированности индиматоров достимсния момпетсиции) Каптавии опапивания вазуштавия	(интетрированная оценка уровня	OTTO
я опенка уровня сформированности инликаторов постижения компетенний)	(интегрированная опенка уровня	

	mandad in mai	mian outling ypobin chop	MRIPOBALLINOTRI RILIGIRIALI OF	(mitel priposatinas odenis sposiis epopiari posatinosti migricai opos Acetrachias nominetenida)	IN)
Код и наимено-			Критерии оценивани:	Критерии оценивания результатов обучения	
вание индикато-	Планируемые результаты				
ра достижения компетеннии	обучения	неудовлетворительно	удовлетворительно	отооох	отлично
ПГ 3.7	21.01.01.01.01.01.01.01.01.01.01.01.01.01	Vacanting monor			Vacanta more
11N -5.2.	энать: подходы при-	уровень знании под-	минимально допу-	уровень знании подхо-	.")
Применяет	менения методов био-	ходов применения ме-	стимый уровень зна-	дов применения методов	ходов применения
результаты	технологии и генной	тодов биотехнологии	ний подходов приме-	биотехнологии и генной	методов биотехноло-
научно-	инженерии в научно-	и генной инженерии в	нения методов био-	инженерии в научно-	гии и генной инжене-
исследова-	исследовательской дея-	научно-	технологии и генной	исследовательской дея-	рии в научно-
тельской дея-	тельности при управле-	исследовательской	инженерии в научно-	тельности при управле-	исследовательской
тельности	нии лесокультурным	деятельности при	исследовательской	нии лесокультурным	деятельности при
при управле-	процессом области их	управлении лесокуль-	деятельности при	процессом области их	управлении лесокуль-
нии объекта-	функционального ис-	турным процессом	управлении лесокуль-	функционального ис-	турным процессом
ми лесного	пользования, охраны и	области их функцио-	турным процессом	пользования, охраны и	области их функцио-
хозяйства в	защиты	нального использова-	области их функцио-	защиты в объеме, соот-	нального использова-
области их		ния, охраны и защиты	нального использова-	ветствующем программе	ния, охраны и защи-
функцио-		ниже минимальных	ния, охраны и защиты,	подготовки, допущено	ты, соответствующем
нального ис-		требований, имели	допущено много не-	несколько негрубых	программе подготов-
пользования,		место грубые ошибки	грубых ошибок	ошибок	ки, без ошибок
охраны и за-	<i>Уметь:</i> применять ме-	При применении ме-	При применении ме-	При применении мето-	При применении ме-
ЩИТЫ	тоды биотехнологии и		тодов биотехнологии	дов биотехнологии и	тодов биотехнологии
	генной инженерии в	и генной инженерии в	и генной инженерии в	генной инженерии в	и генной инженерии в
	научно-	научно-	научно-	научно-	научно-
	исследовательской дея-	исследовательской	исследовательской	исследовательской дея-	исследовательской
	тельности при управле-	деятельности при	деятельности при	тельности при управле-	деятельности при
	нии лесокультурным	управлении лесокуль-	управлении лесокуль-	нии лесокультурным	управлении лесокуль-
	процессом области их	турным процессом их	турным процессом	процессом области их	турным процессом
	функционального ис-	функционального ис-	области их функцио-	функционального ис-	области их функцио-
	пользования, охраны и	пользования, охраны	нального использова-	пользования, охраны и	нального использова-

защиты	и защиты не продемонстрированы ос-	ния, охраны и защиты продемонстрированы	защиты продемонстри- рованы все основные	ния, охраны и защиты продемонстрированы
	новные умения, имели место грубые ощибки	основные умения, ре-	умения, решены все ос-	все основные умения,
		с негрубыми ошибка-	быми ошибками, выпол-	задачи с отдельными
		ми, выполнены все	нены все задания в пол-	несущественными
		задания, но не в пол-	ном объеме, но некото-	недочетами, выпол-
		ном объеме	рые с недочетами	нены все задания в
				полном объеме
Владеть: способно-	При применении ме-	Имеется минималь-	Продемонстрированы	Продемонстрированы
стью применять методы	тодов биотехнологии	ный набор навыков	базовые навыки приме-	навыки применения
биотехнологии и ген-	и генной инженерии в	применения методов	нения методов биотех-	методов биотехноло-
ной инженерии в науч-	научно-	биотехнологии и ген-	нологии и генной инже-	гии и генной инжене-
но-исследовательской	исследовательской	ной инженерии в	нерии в научно-	рии в научно-
деятельности при	деятельности при	научно-	исследовательской дея-	исследовательской
управлении лесокуль-	управлении лесокуль-	исследовательской	тельности при управле-	деятельности при
турным процессом об-	турным процессом их	деятельности при	нии лесокультурным	управлении лесокуль-
ласти их функциональ-	функционального ис-	управлении лесокуль-	процессом области их	турным процессом
ного использования,	пользования, охраны	турным процессом	функционального ис-	области их функцио-
охраны и защиты	и защиты не проде-	области их функцио-	пользования, охраны и	нального использова-
	монстрированы базо-	нального использова-	защиты, при этом име-	ния, охраны и защиты
	вые навыки, имели	ния, охраны и защиты	ются некоторые недоче-	без ошибок и недоче-
	место грубые ошибки	с некоторыми недоче-	TbI	TOB
		тами		

Описание шкалы оценивания

- 1. Оценка «неудовлетворительно» ставится студенту, не овладевшему ни одним из элементов компетенции, т.е. обнаружившему существенные пробелы в знании основного программного материала по дисциплине, допустившему принципиальные ошибки при применении теоретических знаний, которые не позволяют ему продолжить обучение или приступить к практической деятельности без дополнительной подготовки по данной дисциплине.
- 2. Оценка «удовлетворительно» ставится студенту, овладевшему элементами компетенции «знать», т.е. проявившему знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности, знакомому с основной рекомендованной литературой, допустившему неточности в ответе на экзамене, но в основном обладающему необходимыми знаниями для их устранения при корректировке со стороны экзаменатора.
- 3. Оценка «хорошо» ставится студенту, овладевшему элементами компетенции «знать» и «уметь», проявившему полное знание программного материала по дисциплине, освоившему основную рекомендованную литературу, обнаружившему стабильный характер знаний и умений и способному к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности.
- 4. Оценка «отлично» ставится студенту, овладевшему элементами компетенции «знать», «уметь» и «владеть», проявившему всесторонние и глубокие знания программного материала по дисциплине, освоившему основную и дополнительную литературу, обнаружившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний.
- 5. Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».
 - 6. Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИ-МЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНО-СТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРО-ЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Таблица 3.1 – Типовые контрольные задания соотнесенные с индикаторами достижения компетенций

Индикатор достижения компетенции	№№ заданий (вопросов, билетов, тестов и	
	пр.) для оценки результатов обучения по	
	соотнесенному индикатору достижения	
	компетенции	
ПК -3.2.	1. Примерная тематика устного опро-	
Применяет результаты научно-	са(вопросы 1-8).	
исследовательской деятельности при	2. Вопросы для коллоквиумов, собеседо-	
управлении объектами лесного хозяйства в	вания (вопросы 1-15).	
области их функционального использова-	3. Комплект тестовых вопросов по дисци-	
ния, охраны и защиты	плине (вопросы 1-84)	

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИ-ЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Примерная тематика устного опроса

- 1. Современный уровень развития биотехнологии в мире и в Российской Федерации.
- 2. Устройство генетического кода живых организмов.
- 3. Особенности применения микроклонального размножения у древесных растений.
- 4. Массовое тиражирование растений при микроклональном размножении.
- 5. Генетическая инженерия у растений.
- 6. Современные достижения генетической инженерии в лесном хозяйстве.
- 7. Современные достижения клеточной инженерии в области размножения древесных пород.
- 8. Генетическое загрязнение. Проблемы биологической этики.

Вопросы для коллоквиумов, собеседования

- 1. История и основные этапы развития биотехнологии и генной инженерии.
- 2. Современный уровень развития биотехнологии в мире и в Российской Федерации.
- 3. Определение генетического кода растений. Регуляция синтеза белка..
- 4. Роль митоза и мейоза при макрогаметогенезе.
- 5. Роль митоза и мейоза при микрогаметогенезе.
- 6. Особенности применения микроклонального размножения (in vitro) (подготовка помещений, оборудование, состав питательных сред, стерилизация). Технология размножения растений. Достоинство и недостатки данного способа.
- 7. Массовое тиражирование растений при микроклональном размножение. Приготовление питательных сред, посуды.
- 8. Массовое черенкование березы повислой. (подготовка помещений, оборудование, состав питательных сред, стерилизация). Технология размножения растений. Достоинство и недостатки данного способа.
- 9. Основные этапы решения генноинженерной задачи.
- 10. Генетическая инженерия у растений. Применяемое оборудование, совокупность методов, позволяющих искусственно переносить генетическую информацию из

- одного организма в другой с помощью специально созданных генетических конструкций.
- 11. Конструирование (вне организма) рекомбинантных молекул ДНК (искусственно скомбинированных из фрагментов) с заданными наследственными свойствами.
- 12. Трансгенные организмы.
- 13. Метод полимеразной цепной реакции (ПЦР). Получения целевой ДНК в достаточных для работы количествах в генной инженерии. История развития метола.
- 14. Современные достижения генетической инженерии (ГИ). Достоинство и недостатки данного способа.
- 15. Сравнительная оценка методов классической селекции с методами генетической инженерии.

Комплект тестовых вопросов по дисциплине

- 1). Как называется наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных биологических объектов для интенсификации производства или получения новых видов продуктов различного назначения?
 - 1. клеточная биотехнология;
 - 2. генетика;
 - 3. биология;
 - 4. биохимия.

2) На чем базируется клеточная биотехнология?

- 1. на получении новых видов продуктов различного назначения;
- 2. на использовании протопластов;
- 3. на знании законов биологии;
- 4. на использовании культуры клеток, тканей и протопластов.

3) На чем базируются биотехнологические процессы?

- 1. на получении новых видов продуктов различного назначения;
- 2. на использовании протопластов;
- 3. на использовании биосинтетического потенциала микроорганизмов, растительных и животных клеток, тканей и органов, культивируемых на искусственных питательных средах;
- 4. на использовании питательных сред.

4) Какие разделы включает биотехнология?

- 1. генетическая инженерия, генная инженерия;
- 2. генетическая инженерия, клеточная инженерия, биологическая инженерия;
- 3. клеточная инженерия, биологическая инженерия;
- 4. генетическая инженерия, клеточная инженерия.

5) Какие важные задачи решает генная инженерия?

- 1. получение генов путем выделения их из клеток или синтеза, получение рекомбинантных молекул ДНК, клонирование генов, введение генов в клетку и синтез чужеродного ей белка;
- 2. получение генов путем выделения их из клеток или синтеза, получение рекомбинантных молекул ДНК;
- 3. клонирование генов, введение генов в клетку и синтез чужеродного ей белка;
- 4. клонирование генов.
- 6) Как называется техника генной инженерии, включающая выделение индивидуальных фрагментов ДНК любого происхождения, их стабильное воспроизведение в составе векторов, идентификация функций клонированных таким образом генов, их изменение и введение в клетки исходного или иного организма?
 - 1. клонированием генов;

- 2. секвенированием;
- 3. рестрикцией;
- 4. техникой рекомбинантной ДНК.

7) Каким ферментам отводят главную роль на этапе выделения гена?

- 1. эндонуклеазам;
- 2. пептидполимеразам;
- 3. эндонуклеазам рестрикции (рестриктазам);
- 4. транскриптазам.

8) Какие структуры ядра обладают наследственностью?

- 1. нуклеоплазма;
- 2. ядрышки;
- 3. кариоплазма;
- 4. хромосомы.

9) Какие структуры цитоплазмы обладают наследственностью?

- 1. пластиды, рибосомы;
- 2. пластиды, митохондрии и гиалоплазма;
- 3. митохондрии, ЭПР;
- 4. пластиды, вакуоли.

10) Как называется наследственность, контролируемая элементами ядра?

- 1. цитоплазматической;
- 2. кариотипической;
- 3. ядерной;
- 4. ядрышковой.

11) Как называется наследственность, контролируемая структурами, сосредоточенными в цитоплазме?

- 1. цитоплазматической;
- 2. цитогенетической;
- 3. ядерной;
- 4. цитологической.

12) Какому органоиду клетки принадлежит ведущая роль в передаче наследственной информации?

- 1. митохондриям;
- 2. ядру;
- 3. пластидам;
- 4. рибосомам.

13) В какой части хромосомы заключено основное наследственное вещество?

- 1. в хроматидах;
- 2. в перетяжках;
- 3. в спутнике;
- 4. в хромонеме.

14) Наследование какого признака является классическим примером участия пластид в передаче наследственности у многих видов растений, в том числе и у древесных и кустарниковых?

- 1. наследование пестролистности;
- 2. наследование высоты;
- 3. наследование формы растения;
- 4. наследование формы листьев.

15) С чем связывают генетические функции цитоплазмы?

- 1. с наследованием пестролистности;
- 2. с цитоплазматической мужской стерильностью у растений (ЦМС);
- 3. с наследованием высоты растений;
- 4. с недоразвитием тычинок.

16) Что является элементарной единицей наследственности?

- 1. ДНК;
- 2. нуклеотид;
- 3. хромосомы;
- 4. ген.

17) Какое деление называется митозом?

- 1. способ деления половых клеток;
- 2. способ деления половых и соматических клеток;
- 3. способ деления вегетативных клеток и спор;
- 4. процесс деления цитоплазмы пополам.

18) Перечислите фазы митоза.

- 1. профаза, метафаза, анафаза, телофаза;
- 2. интерфаза, профаза, метафаза, анафаза, телофаза;
- 3. профаза, метафаза, анафаза, телофаза, интерфаза;
- 4. профаза, метафаза, анафаза, интерфаза.

19) В какой фазе митоза хромосомы расположены в экваториальной плоскости клетки?

- 1. профаза;
- 2. анафаза;
- 3. телофаза;
- 4. метафаза.

20) Какие изменения происходят в клетке во время анафазы митотического деления?

- 1. расхождение хромосом к полюсам;
- 2. растворение ядерной оболочки;
- 3. образуется веретено деления;
- 4. деспирализация хромосом.

21) Что называется митотическим циклом (клеточным циклом) клетки?

- 1. все фазы митоза вместе взятые;
- 2. митоз и интерфаза вместе взятые;
- 3. интерфаза;
- 4. состояние клетки после каждой фазы митоза.

22) На сколько периодов подразделяется интерфаза?

- 1. 5;
- 2. 4;
- 3. 3:
- 4. 2.

23) В какой фазе митоза растворяются ядрышки?

- 1. метафаза;
- 2. анафаза;
- 3. телофаза;
- 4. профаза.

24) В какой фазе митоза растворяется ядерная оболочка?

- 1. метафаза;
- 2. профаза;
- 3. анафаза;
- 4. телофаза.

25) В какой фазе митоза осуществляется разделение центромер и распад хромосом на две хроматиды?

- 1. интерфазе;
- 2. метафазе;
- 3. анафазе;

4. профазе.

26) Сколько делений в мейозе?

- 1. 1 деление;
- 2. 2 деления;
- 3. 3 деления;
- 4. 4 деления.

27) Сколько дочерних клеток образуется в результате митоза?

- 1. 3;
- 2. 6;
- 3. 2;
- 4. 4.

28) Перечислите стадии профазы І мейоза.

- 1. лептонема, пахинема, диакинез;
- 2. лептонема, зигонема, пахинема, диплонема, интеркинез;
- 3. лептонема, зигонема, диплонема, интеркинез;
- 4. лептонема, зигонема, пахинема, диплонема, диакинез.

29) Как называется взаимное притяжение гомологичных хромосом в мейозе?

- 1. коньюгация;
- 2. кроссинговер;
- 3. цитокинез;
- 4. синаптонемный комплекс.

30) Что такое кроссинговер?

- 1. сближение хромосом;
- 2. обмен участками между гомологичными хромосомами;
- 3. спирализация хромосом;
- 4. обмен участками между негомологичными хромосомами.

31) Как называется фаза между делениями мейоза?

- 1. кариокинез;
- 2. диакинез;
- 3. интеркинез;
- 4. интерфаза.

32) Сколько дочерних клеток образуется в результате мейоза?

- 1. 4;
- 2. 2;
- 3. 6;
- 4. 3.

33) Что входит в состав отдельного нуклеотида молекулы ДНК?

- 1. одно из четырех азотистых оснований (А, Т, Г, Ц), пятиуглеродный сахар дезоксирибоза;
- 2. одно из четырех азотистых оснований (А, У, Г, Ц), пятиуглеродный сахар дезоксирибоза, остаток фосфорной кислоты;
- 3. пятиуглеродный сахар дезоксирибоза, остаток фосфорной кислоты;
- 4. одно из четырех азотистых оснований (А, Т, Г, Ц), пятиуглеродный сахар дезоксирибоза, остаток фосфорной кислоты.

34) К какому углеродному атому в молекуле ДНК может присоединяться остаток фосфорной кислоты?

- 1. к первому;
- 2. к третьему и пятому;
- 3. к первому и третьему;
- 4. к первому и пятому.

35) Какую спираль имеет молекула ДНК?

1. правозакрученную спираль;

- 2. цепочки ДНК не закручены;
- 3. левозакрученную спираль;
- 4. имеет одну цепочку.

36) Какими связями удерживаются цепочки ДНК?

- 1. фосфодиэфирными связями, возникающими между азотистыми основаниями;
- 2. водородными связями, возникающими между азотистыми основаниями;
- 3. фосфодиэфирными связями, возникающими между остатком фосфорной кислоты в одной цепи и азотистым основанием в другой цепи;
- 4. водородными связями, возникающими между остатком фосфорной кислоты в одной цепи и азотистым основанием в другой цепи.

37) С каким углеродным атомом в молекуле ДНК связано азотистое основание?

- 1. со вторым углеродным атомом дезоксирибозы;
- 2. с пятым углеродным атомом дезоксирибозы;
- 3. с третьим углеродным атомом дезоксирибозы;
- 4. с первым углеродным атомом дезоксирибозы.

38) Какими связями в молекуле ДНК удерживается пара оснований аденин-тимин?

- 1. тремя водородными связями;
- 2. одной водородной связью;
- 3. двумя водородными связями;
- 4. четырьмя водородными связями.

39) Какими связями соединяются нуклеотиды в одной цепи в молекуле ДНК?

- 1. фосфодиэфирными;
- 2. водородными;
- 3. двумя водородными связями;
- 4. чередованием фосфодиэфирных и водородных связей.

40) Сколько водородных связей в молекуле ДНК возникает между парой оснований гуанин-цитозин?

- 1. 4;
- 2. 3;
- 3. 2;
- 4. 1.

41) Как называется способность образовывать водородные связи только между определенными азотистыми основаниями в молекуле ДНК?

- 1. правилом комплементарности;
- 2. правилом антипараллельности;
- 3. правилом Чаргафа;
- 4. избирательной способностью.

42) Какое азотистое основание отсутствует в молекуле РНК?

- 1. аденин;
- 2. гуанин;
- 3. тимин;
- 4. цитозин.

43) Какой сахар присутствует в составе молекулы РНК?

- 1. рибоза;
- 2. глюкоза;
- 3. фруктоза;
- 4. дезоксирибоза.

44) Какое азотистое основание присутствует в РНК, но не входит в состав ДНК?

- 1. аденин;
- 2. тимин;
- 3. гуанин;
- 4. урацил.

- 45) По какому механизму происходит репликация ДНК?
 - 1. по полуконсервативному;
 - 2. по консервативному;
 - 3. по дисперсионному;
 - 4. по спонтанному.
- 46) Как называется участок ДНК, состоящий из нескольких нуклеотидов и контролирующий формирование элементарного признака через синтез белков?
 - 1. локус;
 - 2. триплет;
 - 3. нуклеотид;
 - 4. ген.
- 47) Перечислите типы РНК.
 - 1. и-РНК, м-РНК, р-РНК;
 - 2. и-РНК, м-РНК, т-РНК;
 - 3. и-РНК, т-РНК, р-РНК;
 - 4. и-РНК, м-РНК, т-РНК, р-РНК.
- 48) Как называется процесс удвоения ДНК?
 - 1. репарация;
 - 2. репликация;
 - 3. рекомбинация;
 - 4. экспрессия.
- 49) Как называется процесс, при котором происходит образование и-РНК на нити ДНК?
 - 1. репликация;
 - 2. трансляция;
 - 3. репарация;
 - 4. транскрипция.
- 50) С помощью каких структур осуществляется перенос аминокислот к и-РНК при синтезе белка?
 - 1. т-РНК;
 - 2. p-PHK;
 - 3. м-РНК;
 - 4. ДНК.
- 51) Как называется процесс транспортировки аминокислот к и-РНК в процессе синтеза белка?
 - 1. транскрипция;
 - 2. репликация;
 - 3. трансляция;
 - 4. транспирация.
- 52) Как называется процесс определения полных нуклеотидных последовательностей ДНК?
 - 1. рестрикция;
 - 2. модификация;
 - 3. транскрипция;
 - 4. секвенирование.
- 53) Какова основныя задача секвенирования геномов?
 - 1. изучить работу гена;
 - 2. выяснить строение гена;
 - 3. выяснить строение генома и его работу как единого целого;
 - 4. изучить процесс синтеза ДНК.

- 54) Как называется направление современной молекулярной биологии, основными задачами которого являются секвенирование геномов, их картирование и сравнительный анализ структур геномов разных организмов?
 - 1. генетика;
 - 2. геномика;
 - 3. бионика:
 - 4. биофизика.
- 55) Как называется процесс идентификации генов и локализации места их расположения на хромосоме?
 - 1. секвенирование;
 - 2. рестрикция;
 - 3. картирование;
 - 4. фоторграфирование.
- 56) Какое научное направление занимается системным анализом нуклеотидных последовательностей ДНК и РНК, а также аминокислотных последовательностей белков, т.е. сравнительной геномикой?
 - 1. биофизика;
 - 2. биоинформатика;
 - 3. биохимия;
 - 4. биология.
- 57) Что является главной задачей функциональной геномики?
 - 1. выяснение биологических функций генных продуктов;
 - 2. системный анализ нуклеотидных последовательностей ДНК и РНК;
 - 3. анализ нуклеотидных последовательностей;
 - 4. секвенирование геномов.
- 58) Как называются технологии основанные на возможности выращивания тканей и клеток in vitro, слиянии соматических клеток или их протопластов?
 - 1. генная инженерия;
 - 2. биологическая инженерия;
 - 3. генетическая инженерия;
 - 4. клеточная инженерия.
- 59) В чем заключается основное преимущество клонального микроразмножения?
 - 1. в получении большого количества посадочного материала;
 - 2. в выращивании тканей и клеток in vitro;
 - 3. в получении генетически однородного безвирусного посадочного материала;
 - 4. в получении посадочного материала.
- 60) С чего начинается приготовление питательной среды?
 - 1. со взвешивания ее компонентов;
 - 2. со смешивания компонентов;
 - 3. с подписывания этикеток;
 - 4. с мытья лабораторной посуды.
- 61) Какие весы применяют для взвешивания солей?
 - 1. технические:
 - 2. аналитические;
 - 3. электронные;
 - 4. весы типа Sartorius 2354.
- 62) Какие весы применяют для взвешивания агар-агара, сахарозы, глюкозы?
 - 1. аналитические;
 - 2. весы ВЛАО;
 - 3. электронные;
 - 4. технические или электронные.

63) Что делают	после того	как все ком	поненты для	н приготовления	питательной	cpe-
ды взвешены?						

- 1. растворяют компоненты;
- 2. промывают компоненты;
- 3. смешивают компоненты;
- 4. стерилизуют компоненты.

64) Каким образом растворяют агар-агар, необходимый для приготовления питательной среды?

- 1. на открытом огне;
- 2. на пару;
- 3. в сушильном шкафу;
- 4. в холодной воде.

65) Какой набор микроэлементов используется во многих питательных средах?

- 1. из среды WPM;
- 2. из среды Чу;
- 3. из среды Смирнова;
- 4. из среды по MS.

66) Какое количество раствора микроэлементов добавляется на 1 л питательной среды?

- 1. 2 мл;
- 2. 1 мл:
- 3. 4 мл;
- 4. 3 мл.

67) Как называется фрагмент ткани или органа растения, инкубируемый самостоятельно при микроклональном размножении?

- 1. органелла;
- 2. каллус;
- 3. эксплант;
- 4. нуллисомик.

68) Какие почки используют для введения в культуру?

- 1. генерационные;
- 2. любые;
- 3. генеративные;
- 4. вегетативные.

69) Какие черенки представляют особенную ценность для введения в культуру?

- 1. черенки с верхушечной почкой;
- 2. любые;
- 3. черенки с генеративной почкой;
- 4. черенки без почки.

70) Для чего предназначен ламинар-бокс?

- 1. для проращивания;
- 2. для обеззараживания воздуха путем фильтрации;
- 3. для стерилизации растительного материала;
- 4. для приготовления питательной среды.

71) Что такое контаминация?

- 1. обеззараживание;
- 2. стерилизация;
- 3. заражение;
- 4. очищение.

72) В чем заключается стерилизация?

- 1. в обжиге;
- 2. в обработке спиртом;

- 3. в промывании;
- 4. в обработке спиртом и обжиге.

73) В чем заключается очищение?

- 1. в обработке от пыли и грязи;
- 2. в обработке от пыли и грязи спиртом;
- 3. в обжиге;
- 4. в обработке спиртом и обжиге.

74) Каким образом осуществляется массовое черенкование при микроклональном размножении?

- 1. 2-3 проростка делятся на черенки с помощью ножниц;
- 2. несколько проростков по отдельности делятся на черенки;
- 3. пучок проростков нарезается на черенки с помощью ножниц;
- 4. пучок проростков делится на черенки с помощью рук.

75) Какая среда применяется для массового тиражирования при микроклональном черенковании?

- 1. жидкая среда Чу;
- 2. среда MS;
- 3. среда WPM;
- 4. среда Смирнова.

76) Как называется совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы?

- 1. генетика:
- 2. биотехнология;
- 3. клеточная инженерия;
- 4. генетическая инженерия.

77) Назовите основные этапы решения генноинженерной задачи?

- 1. получение изолированного гена, введение гена в вектор для переноса в организм, перенос вектора с геном в модифицируемый организм, преобразование клеток организма;
- 2. получение изолированного гена, введение гена в вектор для переноса в организм;
- 3. получение изолированного гена, введение гена в вектор для переноса в организм, перенос вектора с геном в модифицируемый организм, преобразование клеток организма, отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы;
- 4. введение гена в вектор для переноса в организм, перенос вектора с геном в модифицируемый организм, преобразование клеток организма.

78) Какие ферменты используют чтобы встроить ген в вектор?

- 1. эндонуклеазы;
- 2. рестриктазы и лигазы;
- 3. лигазы;
- 4. рестриктазы.

79) Как называется явление, в основе которого лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами?

- 1. бактериальная трансформация;
- 2. генетическая трансформация;
- 3. гибридизация;
- 4. спорогенез.

80) Как называется процесс внедрения чужеродной ДНК, используемый как принцип введения генетического материала в клетку?

1. транскрипция;

- 2. трансформация;
- 3. транзикция;
- 4. трансфекция.
- 81) Как называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации?
 - 1. визуализация гена;
 - 2. экспрессия гена;
 - 3. нокаут гена;
 - 4. нокдаун гена.
- 82) Как называется добавление в организм гена, которого у него ранее не было?
 - 1. визуализация гена;
 - 2. искусственная экспрессия;
 - 3. естественная экспрессия;
 - 4. нокаут гена.
- 83) От чего прежде всего зависят особенности экспрессии гена?
 - 1. от рецессивности гена;
 - 2. от доминантности гена;
 - 3. от небольшого участка ДНК, расположенного за кодирующей областью;
 - 4. от небольшого участка ДНК, расположенного перед кодирующей областью.
- 84) Как называется экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты в биологическом материале?
 - 1. полимеразная цепная реакция (ПЦР);
 - 2. секвенирование;
 - 3. рестрикция;
 - 4. трансфекция.

Лекции оцениваются по посещаемости, активности, умению выделить главную мысль.

Практические занятия оцениваются по самостоятельности выполнения работы, грамотности в оформлении, правильности выполнения.

Самостоятельная работа оценивается по качеству и количеству выполненных домашних работ, грамотности в оформлении, правильности выполнения.

Промежуточная аттестация проводится в форме зачета.

Критерии оценки экзамена в виде билетов: количество баллов. Для получения соответствующей оценки на экзамене по курсу используется накопительная система балльно-рейтинговой работы студентов. Итоговая оценка складывается из суммы баллов или оценок, полученных по всем разделам курса и суммы баллов полученной на экзамене.

Таблица 4.1 - Критерии оценки уровня знаний студентов с использованием теста на экзамене по учебной дисциплине

Оценка	Характеристики ответа студента
Отлично	86-100 % правильных ответов
Хорошо	71-85 %
Удовлетворительно	51- 70%
Неудовлетворительно	Менее 51 %

Количество баллов и оценка неудовлетворительно, удовлетворительно, хорошо, отлично определяются программными средствами по количеству правильных ответов к количеству случайно выбранных вопросов.

Критерии оценивания компетенций следующие:

- 1.Ответы имеют полные решения (с правильным ответом). Их содержание свидетельствует об уверенных знаниях обучающегося и о его умении решать профессиональные задачи, оценивается в 5 баллов (отлично);
- 2. Более 75 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует о достаточных знаниях обучающегося и его умении решать профессиональные задачи 4 балла (хорошо);
- 3.Не менее 50 % ответов имеют полные решения (с правильным ответом) Их содержание свидетельствует об удовлетворительных знаниях обучающегося и о его ограниченном умении решать профессиональные задачи, соответствующие его будущей квалификации 3 балла (удовлетворительно);
- 4.Менее 50 % ответов имеют решения с правильным ответом. Их содержание свидетельствует о слабых знаниях обучающегося и его неумении решать профессиональные задачи— 2 балла (неудовлетворительно).