

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Казанский государственный аграрный университет» (ФГБОУ ВО Казанский ГАУ)

Институт механизации и технического сервиса Кафедра физики и математики

> УГВЕРКЛАЮ Проректор по учестовіступа выной расте, доцент — А.Б. Двитриев — 20 ждзя 2021 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОК УГАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

«Математика» (Оценочные средства и методические материалы)

приложение к рабочей программе дисциплины

Направление подготовки 35.03.03 Агрохимия и агропочвоведение

Направленность (профиль) подготовки **Агроэкология**

> Форма обучения Очная, заочная

Составитель: доцент кафедры физики и математики, к.сх.н. Киселева Н.Г.
Оценочные средства обсуждены и одобрены на заседании кафедры физики и математики «12» мая 2021 (протокол № 9)
Заведующий кафедрой физики и математики, д.т.н., профессор Ибятов Р.И.
Рассмотрены и одобрены на заседании методической комиссии Института механизации и технического сервиса «14» мая 2021 г. (протокол № 9)
Председатель методической комиссии: доцент кафедры ЭиРМ, к.т.н., доцент <u>Mullif</u> Шайхутдинов Р.Р.
Согласовано:
Директор Института механизации

Согласовано: Директор Института механизации и технического сервиса, д.т.н., профессор

Протокол Ученого совета ИМиТС № 10 от «17» мая 2021 г.

Казань — 2021

Яхин С.М.

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВА-НИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения ОПОП бакалавриата по направлению обучения 35.03.03 Агрохимия и агропочвоведение, обучающийся должен овладеть следующими результатами обучения по дисциплине «Математика»:

Таблица 1.1 – Требования к результатам освоения дисциплины

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Перечень планируемых результатов обучения по дисциплине
ОПК-1. Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических, естественнонаучных и обще профессиональных дисциплин с применением информационно- коммуникационных технологий	ОПК-1.1. Демонстрирует знание основных законов математических дисциплин, необходимых для решения типовых задач в области агрономии деятельности	Знать: основные фундаментальные законы математики и основные методы математической статистики для решения стандартных задач в области агрономии Уметь: использовать основные фундаментальные законы математики и основные методы математической статистики для решения стандартных задач в области агрономии Владеть: навыками использования фундаментальных законов математики и основных методов математической статистики для решения стандартных задач в области агрономии

3

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОР-МИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Таблица 2.1 – Показатели и критерии определения уровня сформированности компетенций (интегрированная оценка уровня сформированности компетенций)

Код и наименование	Планируемые резуль-	Оценка уровня сформированности			
индикатора достиже- ния компетенции	таты обучения	неудовлетворительно	удовлетворительно	хорошо	ончилто
ОПК-1.1. Демонстрирует знание основных законов математических дисциплин, необходимых для решения типовых задач в области агрономии	Знать: основные фундаментальные законы математики и основные методы математической статистики для решения стандартных задач в области агрономии	Уровень знаний об основных фундаментальных законах математики и основных методах математической статистики для решения стандартных задач в области агрономии	Продемонстрирован минимально допустимый уровень знаний основных фундаментальных законов математики и основных методов математической статистики для решения стандартных задач в области агрономии	Уровень знаний об основных фунда- ментальных законах математики и основ- ных методах мате- матической стати- стики для решения стандартных задач в области агрономии	Продемонстрированы в полном объеме знания основных фундаментальных законов математики и основных методов математической статистики для решения стандартных задач в области агрономии
	Уметь: использовать основные фундаментальные законы математической статистики и основные методы математической статистики для решения стандартных задач в области агрономии	Имеет место фраг- ментарные умения навыков использова- ния основных фун- даментальных зако- нов математики и основных методов математической ста- тистики для решения стандартных задач в области агрономии	Имеется низкий уровень умения ис- пользования основ- ных фундаменталь- ных законов мате- матики и основных методов математи- ческой статистики для решения стан- дартных задач в об- ласти агрономии	Продемонстрирова- ны основные базо- вые умения исполь- зования основных фундаментальных законов математики и основных методов математической ста- тистики для решения стандартных задач в области агрономии	Продемонстрированы систематические умения навыками при использовании основных фундаментальных законов математической статистики для решения стандартных задач в области агрономии

4

Владеть: навыками
использования фунда-
ментальных законов
математики и основны
методов математиче-
ской статистики для
решения стандартных
задач в области агро-
номии

Имеются грубые ошибки при владении навыками использования фундаментальных законов математики и основных методов математической статистики для решения стандартных задач в области агоономии Имеется минимальный набор навыков при использовании основных фундаментальных законов математической статистики при решении стандартных задач в области агрономии в

Продемонстрированы базовые навыки у использования основных дундаментальных законов математики и основных методов математической статистики для решения стандартных задач в области агрономии в

Продемонстрированы уверенные систематические владения навыками использования основных фундаментальных законов математики и основных методов математической статистики для решения стандартных задач в области агрономии

.

Описание шкалы опенивания:

- 1. Оценка «неудовлетворительно» ставится студенту, не овладевшему ни одним из элементов компетенции, т.е. обнаружившему существенные пробелы в знании основного программного материала по дисциплине, допустившему принципиальные ошибки при применении теоретических знаний, которые не позволяют ему продолжить обучение или приступить к практической деятельности без дополнительной подготовки по данной дисциплине.
- 2. Оценка «удовлетворительно» ставится студенту, овладевшему элементами компетенции «знать», т.е. проявившему знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности, знакомому с основной рекомендованной литературой, допустившему неточности в ответе на экзамене, но в основном обладающему необходимыми знаниями для их устранения при корректировке со стороны экзаменатора.
- 3. Оценка «хорошо» ставится студенту, овладевшему элементами компетенции «знать» и «уметь», проявившему полное знание программного материала по дисциплине, освоившему основную рекомендованную литературу, обнаружившему стабильный характер знаний и умений и способному к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности.
- 4. Оценка «отлично» ставится студенту, овладевшему элементами компетенции «знать», «уметь» и «владеть», проявившему всесторонние и глубокие знания программного материала по дисциплине, освоившему основную и дополнительную литературу, обнаружившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний.

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБ-ХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯ-ТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Таблица 3.1 — Типовые контрольные задания соотнесенные с индикаторами достижения компетенций

Индикатор достижения компетенции	№№ заданий (вопросов, билетов, тестов и пр.)
	для оценки результатов обучения по соотне-
	сенному индикатору достижения компетенции
ОПК-1.1. Демонстрирует знание основных	Вопросы к экзамену в тестовой форме, в устной
законов математических дисциплин, необ-	форме и образцы контрольных работ, относя-
ходимых для решения типовых задач в об-	щиеся к разделам 1-6
ласти агрономии	

3.1. Вопросы к экзамену и зачету в тестовой форме

Раздел 1. Элементы линейной и векторной алгебры

- 1. Система линейных алгебраических уравнений называется совместной, если
- А) она не имеет ни одного решения
- Б) она имеет хотя бы одно решение
- В) если свободные члены этой системы равны нулю
- Г) если ранг матрицы этой системы равен 1
- 2. Система линейных алгебраических уравнений называется несовместной, если
- А) она не имеет ни одного решения
- Б) она имеет хотя бы одно решение

6

- В) если свободные члены этой системы равны нулю
- Г) если ранг матрицы этой системы равен 1
- 3. Система линейных алгебраических уравнений называется определенной, если:
- А) ранг этой системы равен 1
- Б) если она имеет единственное решение
- В) если она имеет более одного решения
- Г) если она не имеет решений
- 4. Система линейных алгебраических уравнений называется неопределенной, если
- А) ранг этой системы равен 1
- Б) если она имеет единственное решение
- В) если она имеет более олного решения
- Г) если она не имеет решений
- 5. Теорема Кронекера-Капелли утверждает, что система линейных алгебраических уравнений AX = B совместна тогда и только тогда, когда
 - A) r(A) = r(A/B)
- $\mathsf{F})\ r(A) \neq r(A/B)$
- B) r(A) < r(A/B)
- Γ) r(A) > r(A/B)
- 6. Пусть дана система линейных алгебраических уравнений AX = B и r(A) = r(A/B) = n где n-число неизвестных системы. Тогда:
 - А) система не определена
 - Б) система совместна и определена
 - В) система однородная
 - Г) система совместна и не определена
- 7. Пусть дана система линейных алгебраических уравнений AX = B и r(A) = r(A/B) < n где n-число неизвестных системы. Тогда:
 - А) система не определена
 - Б) система совместна и определена
 - В) система однородная
 - Г) система совместна и не определена
 - 8. Система линейных алгебраических уравнений AX = B несовместна тогда, когда:
 - A) r(A) = r(A/B)
- $\mathsf{F})\ r(A) \neq r(A/B)$
- B) r(A) < r(A/B)
- Γ) r(A) > r(A/B)
- 9. Любая невырожденная матрица имеет обратную матрицу следующего вида:

B)
$$A^{-1} = \frac{1}{|A|} \cdot \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

B) $A^{-1} = \frac{1}{|A^{T}|} \cdot \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$

$$\Gamma) A^{-1} = \frac{1}{|A|} \cdot \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

$$\Gamma) A^{-1} = \frac{1}{|A|} \cdot \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}$$

$$\begin{array}{cccc}
\text{B)} \ A^{-1} = |A| \cdot \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

B)
$$A^{-1} = \frac{1}{|A^T|} \cdot \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}$$

$$\Gamma) A^{-1} = \frac{1}{|A|} \cdot \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{21} & A_{22} & A_{23} \end{pmatrix}$$

- 10. Если A и B квадратные матрицы, A невырожденная, то решение матричного Vравнения AX = B имеет вид
 - A) $X = B \cdot A^{-1}$
- Б) $X = A^{-1} \cdot B$ В) $X = A^{-1} \cdot B^{-1}$ Г) $X = A \cdot B^{-1}$
- 11. Три вектора в пространстве называются компланарными, если они
- А) лежат в одной плоскости или на параллельных плоскостях
- Б) лежат на одной прямой или на параллельных прямых
- В) имеют равные длины и параллельны друг другу
- Г) имеют равные длины и лежат в одной плоскости

- 12. Два вектора \vec{a} и \vec{b} называются коллинеарными, если они
- А) лежат в одной плоскости или на параллельных плоскостях
- Б) лежат на одной прямой или на параллельных прямых
- В) имеют равные длины и параллельны друг другу
- Г) имеют равные длины и лежат в одной плоскости
- 13. Два вектора \vec{a} и \vec{b} называются равными, если они
- А) коллинеарные, имеют равные длины и направление
- Б) имеют равные длины
- В) имеют равные длины и коллинеарные
- Г) имеют равные длины и лежат в одной плоскости
- 14. Модуль вектора $\vec{a} = (a_x, a_y, a_z)$ вычисляется по формуле:

A)
$$|\vec{a}| = a_x^2 + a_y^2 + a_z^2$$
 B) $|\vec{a}| = \sqrt{a_x + a_y + a_z}$

(a)
$$|\vec{a}| = \sqrt{a_x + a_y + a_y}$$

B)
$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$\Gamma) \ |\vec{a}| = \sqrt{a_x \cdot a_y \cdot a_z}$$

15. Скалярное произведение двух векторов $\vec{a} = (a_x, a_y, a_z)$ и $\vec{b} = (b_x, b_y, b_z)$ вычисляется по формуле:

A)
$$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$

$$\mathbf{b}) \ \vec{a} \cdot \vec{b} = a_x \cdot a_y \cdot a_z + b_x \cdot b_y \cdot b_z$$

B)
$$\vec{a} \cdot \vec{b} = \sqrt{a_x \cdot a_y \cdot a_z} + \sqrt{b_x \cdot b_y \cdot b_z}$$

B)
$$\vec{a} \cdot \vec{b} = \sqrt{a_x \cdot a_y \cdot a_z} + \sqrt{b_x \cdot b_y \cdot b_z}$$

$$\Gamma) \vec{a} \cdot \vec{b} = \sqrt{a_x + a_y + a_z} + \sqrt{b_x + b_y + b_z}$$

16. Косинус угла α между векторами \vec{a} и \vec{b} вычисляется по формуле:

A)
$$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$
 B) $\cos \alpha = \frac{\vec{a} + \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$ B) $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$ Γ) $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| + |\vec{b}|}$

$$\text{E) } Cos \alpha = \frac{\vec{a} + \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

B)
$$\cos \alpha = \frac{\vec{a} \times \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

$$\Gamma) \ Cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| + |\vec{b}|}$$

- 17. Векторным произведением двух векторов \vec{a} и \vec{b} называется:
- A) третий вектор \vec{c} , длина которого численно равна площади параллелограмма, построенного на векторах \vec{a} и \vec{b} как на сторонах, направленный перпендикулярно плоскости, образованной векторами \vec{a} и \vec{b}
- \vec{c}) третий вектор \vec{c} , длина которого численно равна площади треугольника, построенного на векторах \vec{a} и \vec{b} как на сторонах, направленный перпендикулярно плоскости, образованной векторами \vec{a} и \vec{b}
- В) третий вектор \vec{c} , длина которого численно равна площади треугольника, построенного на векторах \vec{a} и \vec{b} как на сторонах, направленный параллельно плоскости, образованной векторами \vec{a} и \vec{b}
- \vec{c} , длина которого численно равна площади параллелограмма, построенного на векторах \vec{a} и \vec{b} как на сторонах, направленный параллельно плоскости, образованной векторами \vec{a} и \vec{b}
- 18. Площадь треугольника, построенного на векторах \vec{a} и \vec{b} , вычисляется по форму-

A)
$$S = |\vec{a} \times \vec{b}|$$

A)
$$S = |\vec{a} \times \vec{b}|$$
 B) $S = |\vec{a} \cdot \vec{b}|$ Γ) $S = \frac{1}{2} |\vec{a} \times \vec{b}|$

B)
$$S = |\vec{a} \cdot \vec{b}|$$

$$\Gamma) S = \frac{1}{2} |\vec{a} \cdot \vec{b}|$$

19. Формула вычисления векторного произведения вектора $\vec{a} = (a_x, a_y, a_z)$ на вектор $\vec{b} = (b_x, b_y, b_z)$ имеет вид:

A)
$$\vec{a} \times \vec{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \vec{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \vec{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \vec{k}$$

$$\mathbf{E}) \ \vec{a} \times \vec{b} = \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \vec{i} - \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \vec{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \vec{k}$$

B)
$$\vec{a} \times \vec{b} = \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \vec{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \vec{j} + \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \vec{k}$$

$$\Gamma) \vec{a} \times \vec{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \vec{i} - \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \vec{j} + \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \vec{k}$$

20. Если вектора $\vec{a} = (a_x, a_y, a_z)$ и $\vec{b} = (b_x, b_y, b_z)$ коллинеарные, то справедливо следующее равенство:

A)
$$\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$$

$$\mathbf{b}) \ a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z = 0$$

$$\Gamma$$
) $|\vec{a}| \cdot |\vec{b}| = 0$

21. Если вектора $\vec{a}=(a_x,a_y,a_z)$ и $\vec{b}=(b_x,b_y,b_z)$ перпендикулярны, то справедливо следующее равенство:

A)
$$\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$$
 B) $a_x b_x + a_y b_y + a_z b_z = 0$

$$\mathbf{E}) \ a_x b_x + a_y b_y + a_z b_z = 0$$

B)
$$a_x b_x + a_y b_y + a_z b_z = 1$$

$$\Gamma$$
) $|\vec{a}| \cdot |\vec{b}| = 0$

22. Смешанным произведением трех векторов \vec{a} , \vec{b} и \vec{c} называется:

A) скалярное произведение векторного произведения векторов \vec{a} и \vec{b} на вектор \vec{c}

- Б) скалярное произведение суммы векторов \vec{a} и \vec{b} на вектор \vec{c}
- В) векторное произведение вектора \vec{a} на сумму векторов \vec{b} и \vec{c}
- Γ) скалярное произведение вектора \vec{a} на сумму векторов \vec{b} и \vec{c}

23. Смешанное произведение трех векторов $\vec{a}=(a_x,a_y,a_z), \vec{b}=(b_x,b_y,b_z)$ и $\vec{c} = (c_x, c_y, c_z)$ вычисляется по формуле:

A)
$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

 B) $\vec{a}\vec{b}\vec{c} = |\vec{a}| \cdot |\vec{b}| \cdot |\vec{c}|$

$$\Gamma) \vec{a}\vec{b}\vec{c} = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2$$

B)
$$\vec{a}\vec{b}\vec{c} = |\vec{a}| + |\vec{b}| + |\vec{c}|$$
 Γ) $\vec{a}\vec{b}\vec{c} = |\vec{a}| + |\vec{b}| + |\vec{c}|$

24. Геометрический смысл смешанного произведения трех векторов заключается в том, что оно равно:

- А) длине диагонали параллелепипеда, построенного на этих векторах;
- Б) объему параллелепипеда, построенного на этих векторах;
- В) длине вектора, равного сумме этих трех векторов;
- Г) площади параллелограмма, построенного на двух векторах перпендикулярно третьему вектору.
 - 25. Формула вычисления объема треугольной пирамиды имеет вид:

A)
$$V = \frac{1}{3} \vec{a} \vec{b} \vec{b}$$

A)
$$V = \frac{1}{3}\vec{a}\vec{b}\vec{c}$$
 B) $V = \frac{1}{2}\vec{a}\vec{b}\vec{c}$ B) $V = \frac{1}{6}\vec{a}\vec{b}\vec{c}$

 Γ) $V = \vec{a}\vec{b}\vec{c}$

Раздел 2. Аналитическая геометрия на плоскости и в пространстве

1. Угол между прямыми, заданными уравнениями $y = k_1x + b_1$ и $y = k_2x + b_2$, вычисляется по формуле:

A)
$$tg\varphi = \frac{k_2 - k_1}{1 + k_1 k_2}$$
 B) $tg\varphi = \frac{k_2 - k_1}{1 - k_1 k_2}$

$$(5) \ tg\varphi = \frac{k_2 - k_1}{1 - k_1 k_2}$$

B)
$$tg\varphi = \frac{k_2 + k_1}{1 + k_1 k_2}$$
 Γ) $tg\varphi = \frac{k_2 + k_1}{1 - k_1 k_2}$

$$\Gamma$$
) $tg\varphi = \frac{k_2 + k_1}{1 - k_1 k_2}$

2. Если прямые, заданные уравнениями $y = k_1 x + b_1$ и $y = k_2 x + b_2$, перпендикулярны, то угловые коэффициенты удовлетворяют равенству:

A)
$$k_2 = \frac{1}{k_1}$$
 B) $k_1 = k_2$ Γ $k_1 = -k_2$

3. Если прямые, заданные уравнениями $y = k_1 x + b_1$ и $y = k_2 x + b_2$, параллельны, то угловые коэффициенты удовлетворяют равенству:

A)
$$k_2 = \frac{1}{k_1}$$

A) $k_2 = \frac{1}{k_1}$ B) $k_1 = k_2$ Γ $k_1 = -k_2$

4. Расстояние от точки $M_0(x_0, y_0)$ до прямой Ax + By + C = 0 вычисляется по формуле:

A)
$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$
 B) $d = \frac{|Ax_0 + By_0|}{\sqrt{A^2 + B^2}}$

$$B) d = \frac{|Ax_0 + By_0|}{\sqrt{A^2 + B^2}}$$

B)
$$d = |Ax_0 + By_0 + C|$$

B)
$$d = |Ax_0 + By_0 + C|$$
 Γ $d = \frac{|Ax_0 + By_0 + C|}{A^2 + B^2}$

5. Эксцентриситет эллипса, заданного уравнением $\frac{x^2}{c^2} + \frac{y^2}{k^2} = 1$, вычисляется по формуле

A)
$$\varepsilon = \frac{a}{b}$$
 B) $\varepsilon = \frac{c}{a}$ P) $\varepsilon = \frac{c}{b}$

6. Эксцентриситет эллипса, заданного уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, удовлетворяет равен-

CTBV

A) $0 < \varepsilon < 1$ B) $1 < \varepsilon < 2$ B) $\varepsilon > 1$ Γ) $\varepsilon < 0$

7. Уравнения директрис эллипса, заданного уравнением $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$, имеют вид

A)
$$x = \pm \frac{a}{\varepsilon}$$
 B) $y = \pm \frac{a}{\varepsilon}$ Γ $y = \pm \frac{b}{\varepsilon}$

8. Эксцентриситет гиперболы, заданной уравнением $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, вычисляется по формуле

A)
$$\varepsilon = \frac{a}{b}$$
 B) $\varepsilon = \frac{c}{a}$ F) $\varepsilon = \frac{c}{b}$

$$\varepsilon = \frac{l}{2}$$

B)
$$\varepsilon = \frac{\epsilon}{2}$$

- 9. Эксцентриситет гиперболы, заданной уравнением $\frac{x^2}{c^2} \frac{y^2}{h^2} = 1$, удовлетворяет равенству
- A) $0 < \varepsilon < 1$ B) $1 < \varepsilon < 2$ B) $\varepsilon > 1$ Γ) $\varepsilon < 0$
- 10. Асимптоты гиперболы, заданной уравнением $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$, имеют вид

- A) $y = \pm \frac{b}{a}x$ B) $y = \pm \frac{a}{b}x$ B) $x = \pm \frac{b}{a}y$ $y = \pm \frac{b}{a}$
- 11. Уравнение директрисы параболы, заданной уравнением $v^2 = 2px$, имеет вид
- A) $y = -\frac{p}{2}$ B) $x = \frac{p}{2}$

- 12. Уравнение директрисы параболы, заданной уравнением $v^2 = -2px$, имеет вид
- A) $y = -\frac{p}{2}$ B) $x = \frac{p}{2}$ $rac{p}{2}$

- 13. Уравнение директрисы параболы, заданной уравнением $x^2 = -2 py$, имеет вид
- A) $y = -\frac{p}{2}$ B) $x = \frac{p}{2}$

- 14. Уравнение директрисы параболы, заданной уравнением $x^2 = 2py$, имеет вид
- A) $y = -\frac{p}{2}$ B) $x = \frac{p}{2}$ Γ $x = -\frac{p}{2}$

- 15. Параметр параболы p удовлетворяет неравенству p < 0
- A) p > 0

- B) 0
- Γ) p > 1

Раздел 3. Введение в анализ

- 1. Производной функции v = f(x) в точке x_0 называется:
- A) $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$; B) $\lim_{x \to x_0} \frac{f(x)}{x}$ B) $\lim_{x \to x_0} \frac{f(x_0)}{x x_0}$ C) $\lim_{\Delta x \to 0} \frac{f(\Delta x) f(x)}{\Delta x}$
- 2. Производная f'(x) в точке x есть:
- А) касательная к графику функции y = f(x) в точке x:
- Б) угол между касательной к графику функции и положительным направлением оси Ox:
 - В) угловой коэффициент касательной к графику функции v = f(x) в точке x.
- 3. Если функция f(x) непрерывна на отрезке [a;b], дифференцируема на интервале (a:b), то найдется хотя бы одна точка $c \in (a:b)$ такая, что выполняется равенство:
 - A) f(a) f(b) = f'(c)(b-a)
 - Б) f(b) f(a) = f'(c)(b-a)
 - B) f(b) f(a) = f'(c)(a-b)
- 4. Если функция f(x) непрерывна на отрезке [a;b], дифференцируема на интервале (a;b) и на концах отрезка принимает одинаковые значения f(a) = f(b), то найдется хотя бы одна точка $c \in (a,b)$, в которой производная:
 - A) f'(c) = 0
- Б) не существует
- B) f'(c) = 1

- 5. Если функции f(x) и $\varphi(x)$ непрерывны на отрезке [a,b], дифференцируемы на интервале (a:b), причем $\varphi'(x) \neq 0$ для $x \in (a:b)$ то найдется хотя бы одна точка $c \in (a:b)$ такая. что выполняется равенство:
 - A) $\frac{f(b)-f(a)}{\varphi(b)-\varphi(a)} = \frac{f'(c)}{\varphi'(c)}$ B) $\frac{f(a)-f(b)}{\varphi(b)-\varphi(a)} = \frac{f'(c)}{\varphi'(c)}$ B) $\frac{\varphi(b)-\varphi(a)}{f(b)-f(a)} = \frac{f'(c)}{\varphi'(c)}$
- 6. Для вычисления приближенных значений функций используется формула:
- A) $f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x$;
- f(x) ≈ f(Δx) + f'(x) · Δx;
- B) $f(x + \Delta x) \approx f'(x) \cdot \Delta x$.
- 7. Если вторая производная f''(x) при переходе через точку x_0 , в которой она равна нулю или не существует, меняет знак, то точка графика с абсциссой x_0 есть:
 - А) точка перегиба
- Б) точка максимума
- В) точка минимума
- 8. Если функция f(x) дифференцируема на интервале (a;b) и f'(x)>0 для $\forall x \in (a;b)$. то эта функция:
 - А) убывает
- Б) возрастает
- В) выпукла вниз
- 9. Если функция f(x) дифференцируема на интервале (a;b) и f'(x) < 0 для $\forall x \in (a;b)$, то эта функция:
 - А) убывает
- Б) возрастает
- В) выпукла вниз
- 10. Если непрерывная функция y = f(x) дифференцируема в некоторой δ окрестности критической точки x_0 и при переходе через нее (слева направо) производная f'(x) меняет знак с минуса на плюс, то x_0 есть точка:
 - А) максимума
- Б) минимума
- В) перегиба
- 11. Если непрерывная функция y = f(x) дифференцируема в некоторой δ окрестности критической точки x_0 и при переходе через нее (слева направо) производная f'(x) меняет знак с плюса на минус, то x_0 есть точка:
 - А) максимума
- Б) минимума
- В) перегиба
- 12. Угловой коэффициент наклонной асимптоты y = kx + b к графику функции v = f(x) вычисляется по формуле:

- A) $(u \cdot v)' = u' \cdot v u \cdot v'$ B) $\left(\frac{u}{v}\right)' = \frac{u' \cdot v + u \cdot v'}{2}$
- B) $\left(\frac{C}{v}\right) = -\frac{C}{c^2}$ $\Gamma\left(\frac{C}{v}\right) = \frac{C}{c^2}$
- 14. Выберите ложное утверждение
- A) d(u+v) = du+dv
- b) d(uv) = udu + vdv
- B) $d\left(\frac{u}{v}\right) = \frac{vdu udv}{v^2}$ Γ) d(uv) = vdu + udv

Раздел 4. Интегральное исчисление функций одной независимой переменной

- 1. Функция F(x) является первообразной для функции f(x) на некотором промежутке, если в любой точке этого промежутка выполняется равенство:
 - A) F'(x) = f'(x)
- F(x) = f(x)dx
- B) F'(x) = f(x)
- 2. Совокупность всех первообразных F(x) + C для функции f(x) называется:

- A) дифференциалом f(x)
- Б) определенным интегралом
- В) неопределенным интегралом
- 3. К интегрируемым функциям относятся все:
- А) постоянные
- Б) непрерывные
- В) прерывные
- 4. Если $\int f(x)dx = F(x) + C$, то выполняется:
- A)F(x)=f'(x)
- Б) F(x)=f(x)dx
- B) d(F(x)+C)=f(x)dx
- 5. Производная от неопределенного интеграла равна:
- A) $(\int f(x)dx) = F(x)$
- E) $(\int f(x)dx) = F(x) + C$
- 6. Дифференциал от неопределенного интеграла равен:
- A) $d(\int f(x)dx) = f(x)dx$
- $\mathbf{b}) \quad d(\int f(x)dx) = f(x)$

$$d(\int f(x)dx) = f(x)$$
 B)

 $d(\int f(x)dx) = F(x) + C$

- 7. Неопределенный интеграл от дифференциала некоторой функции равен
- A) $\int dF(x) = F(x)$
- Б) $\int dF(x) = F(x) + C$
- B) $\int dF(x) = f(x)$
- 8. Неопределенный интеграл от алгебраической суммы конечного числа непрерывных функций равен:
 - A) $\int (f(x) + \varphi(x))dx = \int f(x)\varphi(x)dx f(x)$

 - B) $\int (f(x) + \varphi(x))dx = \int f(x)dx + \int \varphi(x)dx$
 - 9. Интеграл $\int kf(x)dx$ равен:
 - A) $k+\int f(x)dx$

ле:

- Б) $k \int f(x) dx$
- B) $k^2 \int f(x) dx$
- 10. Интегрирование по частям в неопределенных интегралах выполняется по форму-
- A) $\int u dv = uv \int v du$
- Б) $\int u dv = uv + \int v du$
- B) $\int u dv = uv \int u dv$
- 11. Рациональная дробь называется правильной, если
- А) степень числителя равна степени знаменателя
- Б) степень числителя меньше степени знаменателя
- В) степень числителя больше степени знаменателя
- Г) степень числителя и степени знаменателя равны единице
- 12. Если функция y=f(x) непрерывна на отрезке [a,b] и F(x) какая либо ее первообразная на [a,b](F'(x)=f(x)), то формула Ньютона-Лейбница имеет вид:
 - A) $\int f(x)dx = F(b) + F(a)$ B) $\int f(x)dx = F(b) F(a)$ B) $\int f(x)dx = F(a) F(b)$
 - 13. Если c постоянное число и функция f(x) интегрируема на [a,b], то

- 14. Если функция f(x) интегрируема на [a,b] и a < c < b, то

A)
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{a} f(x)dx;$$

$$\text{E)} \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{a}^{b} f(x)dx$$

B).
$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx + \int_{a}^{c} f(x)dx$$

15. Если функция f(x) интегрируема на [a,b], то f(x) интегрируема и на [b,a] и выполняется:

- $\mathsf{E}\mathsf{D}\mathsf{D} \int f(x)dx = -\int f(x)dx$
- B) $\int f(x)dx = -\int f(-x)dx$
- 16. Если непрерывные функции удовлетворяют неравенству $f(x) \le g(x)$ при $x \in [a;b]$

то

- 17. Если функция f(x) непрерывна на отрезке [a,b], то существует точка $c \in [a,b]$ такая, что:

A)
$$\int_{a}^{b} f(x)dx = f(c)(b+a)$$

$$\mathsf{E}\mathsf{D}\mathsf{D}\int_{0}^{b}f(x)dx=f(c)(b-a)$$

B)
$$\int_{a}^{b} f(x)dx = f(c)(a-b)$$

18. Если функция f(x) интегрируема на [a,b], где a < b, а m и M- соответственно наименьшее и наибольшее значения на отрезке [a,b], то

A)
$$M(b-a) \le \int_{a}^{b} f(x)dx \le m(b-a)$$
;

Б)
$$m(b-a) \le \int_{a}^{a} f(x) dx \le M(b-a)$$
;

B)
$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a)$$
.

19. Определенный интеграл по частям вычисляется по формуле:

20. Площадь фигуры, ограниченной кривыми $y = f_1(x)$ и $y = f_2(x)$, прямыми x = a и x = b (при условии $f_2(x) \ge f_1(x)$) определяется по формуле:

A);
$$S = \int_{a}^{b} (f_1(x) - f_2(x))dx$$
 B) $S = \int_{a}^{b} (f_1(x) + f_2(x))dx$ B) $S = \int_{a}^{b} (f_2(x) - f_1(x))dx$.

$$S = \int_{0}^{b} (f_1(x) + f_2(x))dx$$

B)
$$S = \int_{a}^{b} (f_2(x) - f_1(x)) dx$$

Раздел 5. Теория вероятностей и основы математической статистики

- 1. Два размещения считаются различными, если они отличаются
- А только порядком расположения элементов
- Б) только составом элементов
- В) только числом элементов
- Г) или составом элементов, или их порядком
- 2. Два сочетания считаются различными только в том случае, если
- А) у них все элементы различны
- Б) отличаются порядком расположения элементов
- В) отличаются двумя элементами
- Г) отличаются хотя бы одним элементом
- 3. Перестановка P_n это
- A) сочетание из n элементов по n
- Б) сочетание из n элементов по 0
- В) размещение из n элементов по n
- Γ) размещение из n элементов по 1
- 4. Число размещений A_n^m вычисляется по формуле:

A)
$$\frac{n!}{m!(n-m)!}$$
 B) $\frac{n!}{(n-m)!}$ B) $n!$

$$\mathsf{E}) \; \frac{n!}{(n-m)!}$$

5. Число размещений C_n^m вычисляется по формуле:

$$\mathsf{E}) \; \frac{n!}{(n-m)!}$$

6. Число размещений P_n вычисляется по формуле:

$$\mathsf{E}) \; \frac{n!}{(n-m)}$$

- 7. Случайным называется событие А, которое
- А) может произойти, а может не произойти
- Б) никогда не произойдет
- В) обязательно произойдет
- Γ) произойдет только совместно с событием A
- 8. События А и В называются зависимыми, если
- А) сумма их вероятностей обязательно равна 1
- Б) вероятности событий А и В не зависят друг от друга
- В) вероятность наступления одного из событий зависит от появления или не появления другого
 - Г) они происходят одновременно
 - 9. События А и В называются несовместными, если
- А) вероятность наступления одного из событий зависит от появления или не появления другого
 - Б) появление одного из них исключает появление другого
 - В) сумма их вероятностей никогда не равна 1
 - Г) если одновременно они могут появиться только конечное число раз
- 10. Рассматривается пространство из N элементарных событий. Событию А благоприятствуют M элементарных событий. Классическая вероятность события A равна

A)
$$\frac{N}{M}$$

Б)
$$1 - \frac{N}{M}$$

B)
$$\frac{M}{N}$$

A)
$$\frac{N}{M}$$
 B) $1 - \frac{N}{M}$ B) $\frac{M}{N}$ Γ) $1 - \frac{N}{M}$

11. Произведено n испытаний. Событие A произошло m раз. Относительная частота события A равна

A)
$$W(A) = \frac{n}{m}$$
 B) $W(A) = 1 - \frac{m}{n}$ B) $W(A) = \frac{m}{n}$ Γ) $W(A) = m \cdot n$

- 12. Вероятность P любого события принадлежит отрезку
- A) [1:2] Б) [0;2]
- B) [1;4]
- 13. Сумма вероятностей событий, образующих полную группу, равна
- A) 0
- Б) 1/2
- B) 1
- Γ) 4
- 14. Два события называются противоположными, если они
- А) независимы
- Б) не совместны
- В) елинственно возможны
- Г) образуют полную группу событий
- 15. События образуют полную группу событий, если являются
- А) независимыми
- Б) единственно возможными и независимыми
- В) несовместными и елинственно возможными
- Г) несовместными и равновозможными
- 16. Суммой событий A и B называется событие C,
- которое происходит, если происходят:
- А) только событие A
- \mathbf{F}) только событие \mathbf{B}
- В) одно из событий A или B
- Γ) оба события A и B
- 17. Произведением событий A и B называется событие C,
- которое происходит, если происходит:
- A) только событие A
- \mathbf{F}) только событие \mathbf{B}
- В) одно из событий A или B
- Γ) оба события A и B
- 18. Обязательным условием применения формулы P(A+B)=P(A)+P(B)-P(AB)является
- А) независимость события A и B
- B) события A и B единственно возможны
- В) события A и B противоположны
- Γ) совместность событий A и B
- 19. Обязательным условием применения формулы P(A+B)=P(A)+P(B) является
- А) независимость события A и B
- Б) несовместность событий А и В
- В) события A и B единственно возможны
- Γ) совместность событий A и B
- 20. Вероятность P(A/B) это ...
- А) вероятность события A при условии, что A и B противоположные события
- E) вероятность события A при условии, что A и B несовместные события
- В) вероятность события A при условии, что событие B произошло
- Γ) произведение событий A и B
- 21. Обязательным условием применения формулы P(AB)=P(A)P(B) является
- А) противоположность событий A и B
- Б) независимость событий A и B
- В) несовместность событий A и B

- Γ) зависимость событий A и B
- 22. Обязательным условием применения формулы P(AB)=P(A)P(A/B) является
- А) противоположность событий A и B
- Б) независимость событий А и В
- В) несовместность событий A и B
- Γ) зависимость событий A и B
- 23. Формула полной вероятности имеет вид:

A)
$$P(A) = \sum_{i=1}^{n} P(A) \cdot P_{H_i}(A)$$
 B) $P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_A(H_i)$
B) $P(A) = \sum_{i=1}^{n} P(H_i) \cdot P_{H_i}(A)$ Γ) $P(A) = \sum_{i=1}^{n} P(A) \cdot P_A(H_i)$

- 24. Вероятность появления события $A \ m$ раз в n повторных независимых испытаниях при n < 10 определяется
 - А) формулой Бернулли
 - Б) локальной теоремой Лапласа
 - В) интегральной теоремой Лапласа
 - Г) формулой Пуассона
 - 25. Формула Бернулли имеет вид

A)
$$P_n(m) = C_m^n p^n q^{n-m}$$

Б)
$$P_n(m) = C_n^m p^n q^m$$

B)
$$P_{n}(m) = C_{m}^{n} p^{n} q^{m}$$

$$\Gamma$$
) $P_n(m) = C_n^m p^n q^{n-m}$

- 26. Наивероятнейшим числом наступлений события A в n независимых испытаниях называется
 - A) наибольшее число наступлений события A
 - (B) наибольшая вероятность наступления события (A)
 - В) число наступлений события A при наибольшем числе испытаний
- Γ) число наступлений события A, при котором вероятность наступления события A в nнезависимых испытаниях наибольшая
 - 27. Формула для определения наивероятнейшего числа m_0 имеет вид
 - A) $np p \le m_0 \le np + p$

 - B) $np q \le m_0 \le np + p$
 - Γ) $q \leq m_0 \leq p$
 - 28. Локальная теорема Лапласа позволяет вычислить
 - A) наивероятнейшее число наступлений события в n независимых испытаниях
 - Б) относительную частоту наступлений события в *п* независимых испытаниях
 - В) вероятность появления события m раз в n независимых испытаниях (n > 10)
- Γ) вероятность отклонения числа появлений события m от числа независимых испытаний n
 - 29. В локальной теореме Лапласа $P \approx \frac{\varphi(x)}{\sqrt{npq}}$ аргумент функции $\varphi(x)$ равен

30. Интегральная теорема Лапласа позволяет вычислить

- А) вероятность появления события A m раз в n испытаниях (n > 10)
- Б) вероятность появления события A в n испытаниях не менее a, но не более b раз (n>10)
 - В) наивероятнейшее число появлений события A в n независимых испытаниях (n>10)
 - Γ) относительную частоту наступлений события A в n независимых испытаниях
 - 31. В интегральной формуле Лапласа $P(k_1 \le m \le k_2) = \Phi(x_2) \Phi(x_1)$, аргумент x_1 ра-

A)
$$x_1 = \frac{k_1 - np}{\sqrt{npq}}$$
 B) $x_1 = \frac{k_1}{\sqrt{npq}}$ B) $x_1 = \frac{np}{\sqrt{npq}}$ Γ) $x_1 = k_1 - np$

вен

вен

32. В интегральной формуле Лапласа $P(k_1 \le m \le k_2) = \Phi(x_2) - \Phi(x_1)$, аргумент x_2 ра-

A)
$$x_2 = \frac{k_2 - np}{\sqrt{npq}}$$
 B) $x_2 = \frac{k_2}{\sqrt{npq}}$ B) $x_2 = \frac{np}{\sqrt{npq}}$ Γ) $x_2 = k_2 - np$

- 33. Случайные величины делятся на
- А) переменные и постоянные
- Б) четные и нечетные
- В) рациональные и нерациональные
- Г) дискретные и непрерывные
- 34. Математическое ожидание дискретной случайной величины вычисляется по формуле

A)
$$\sum_{i=1}^{n} x_{i}$$
 B) $\sum_{i=1}^{n} (x_{i} - p_{i}) \cdot x_{i}$ B) $\sum_{i=1}^{n} x_{i}^{2} \cdot p_{i}$ Γ) $\sum_{i=1}^{n} x_{i} p_{i}$

35. Математическое ожидание случайной величины (c X+Y), где c=const, а X, Y – независимые случайные величины, равно:

- A) cM(X)+M(Y)
- \mathbf{F}) $c\mathbf{M}(\mathbf{X})$ – $\mathbf{M}(\mathbf{Y})$
- B) M(X)+M(Y)
- Γ) $M(X) \cdot M(Y)$
- 36 Математическое ожидание постоянной величины С равно
- Б) 1 A) C
- B) 0
- Г) не определено
- 37. Математическое ожидание произведения двух независимых случайных величин Х и Y равно

A)
$$M(X) + M(Y)$$
 B) $\frac{M(X)}{M(Y)}$ Γ) $M(X) \cdot M(Y)$

38. Дисперсия дискретной случайной величины определяется по формуле:

A)
$$\sum_{i=1}^{n} x_i p_i - (\sum_{i=1}^{n} x_i p_i)^2$$
 B) $\sum_{i=1}^{n} x_i^2 p_i - \sum_{i=1}^{n} x_i p_i$

B)
$$\sum_{i=1}^{n} x_i^2 p_i - \sum_{i=1}^{n} x_i p_i$$

Б)
$$\sum_{i=1}^{n} x_i^2 p_i - (\sum_{i=1}^{n} x_i p_i)^2$$
 Γ) $\sum_{i=1}^{n} x_i p_i^2 - (\sum_{i=1}^{n} x_i p_i)^2$

$$\Gamma$$
) $\sum_{i=1}^{n} x_i p_i^2 - (\sum_{i=1}^{n} x_i p_i)^2$

39. Дисперсия случайной величины (cX+Y), где c=const, а X, Y – независимые случайные величины, равно

- A) cD(X)+D(Y)
- Б) $c^2D(X)+D(Y)$
- B) D(X)+D(Y)
- Γ) cD(X)-D(Y)
- 40. Дисперсия разности двух независимых случайных величин X и Y равна: Б) 0
- A) D(X)-D(Y)
- B) D(X)+D(Y)
- Γ) $D(X) \cdot D(Y)$
- 41. Дисперсия постоянной величины С равна
- A) 1 Б) C
- B) 0 Γ) не определена
- 42. Математическое ожидание квадрата отклонения $M(X M(X))^2$ равно
- A) D(X)
- Б) $\delta(X)$
- B) *M*(*X*)
- Γ) V
- 43. Дисперсия от математического ожидания D(M(X)) равна

- A) M(X)
- E) 0
- B) X
- Γ) 1
- 44. Среднее квадратическое отклонение $\sigma(x)$ случайной величины X равно
- A) D(X)
- Б) $\sqrt{M(X)}$
- B) $\sqrt{D(X)}$
- Γ) M(X)
- 45. Математическое ожилание М(X) непрерывной случайной величины X. заданной на интервале (a,b), определяется формулой:
 - A) $M(x) = \int_{0}^{\infty} x^2 f(x) dx$
- 46. Дисперсия D(X) непрерывной случайной величины, заданной на интервале (a, b), определяется формулой
- A) $D(X) = \int_{a}^{b} x^{2} f(x) dx (M(X))^{2}$ B) $D(X) = \int_{a}^{b} (x M(X))^{2} dx$ B) $D(X) = \int_{a}^{b} (x M(X)) dx$
- 47. Графическая форма задания закона распределения случайной величины это
- А) парабола
- Б) прямая линия
- В) окружность
- Г) полигон
- 48. Табличная форма задания закона распределения случайной величины называется
- А) суммой распределения
- Б) интегралом распределения
- В) рядом распределения
- Г) полем распределения
- 49. Дискретная случайная величина принимает ...:
- А) только множество целых значений
- Б) только множество положительных значений
- B) все значения из интервала $(-\infty; +\infty)$
- Г) конечное или бесконечное счетное множество значений
- 50. Непрерывная случайная величина принимает
- А) множество целых значений
- Б) множество рациональных значений
- В) конечное множество значений
- Г) любое значение из конечного или бесконечного интервала
- 51. Если X непрерывная случайная величина, a и b конкретные значения, то отсюда следует, что
 - A) $P(a \le X \le b) \ne P\{a \le X \le b\}$
 - Б) $P(a \le X \le b) \ne P(a \le X \le b)$
 - B) $P(a \le X \le b) \ne P(a \le X \le b)$
 - Γ) $P(a \le X < b) = P(a \le X \le b) = P(a < X \le b) = P(a < X < b)$
 - 52. Если f(x) плотность распределения, то $\int x f(x) dx$ равен
 - ∞ (A
 - (5) -1
 - B) 0
 - Γ) 1

- 53. Если f(x) плотность распределения, то $\int f(x)dx$ определяет
- A) M(X)
- Б) D(X)
- B) $\sigma(x)$
- Γ) F(X)
- 54. Функция распределения случайной величины Х задается формулой:
- A) F(x) = P(X > x)
- Б) F(x) = P(X = x)
- B) F(x) = P(X < x)
- Γ) F(x) = X
- 55. Лискретная случайная величина, выражающая число появления события А в п независимых испытаниях, проводимых в равных условиях и с одинаковой вероятностью появления события в каждом испытании, называется распределенной по ...:
 - А) нормальному закону
 - Б) по закону Пуассона
 - В) биномиальному закону
 - Г) по показательному закону
- 56. Если случайная величина имеет биномиальное распределение. п число независимых испытаний, а р - вероятность наступления события, то математическое ожидание вычисляется по формуле
 - A) M(X)=n
- \mathbf{F}) $\mathbf{M}(\mathbf{X})=\mathbf{p}$
- B) M(X)=npq
- Γ) M(X)=np
- 57. Если случайная величина имеет биномиальное распределение, п число независимых испытаний, а р - вероятность наступления события, то дисперсия случайной величины вычисляется по формуле
 - A) D(X)=npq
- \mathbf{B}) $\mathbf{D}(\mathbf{X}) = np$
- B) D(X) = n-p
- Γ) D(X) = p
- 58. Математическое ожидание равномерно распределенной случайной величины вычисляется по формуле

 - A) $M(X) = \frac{a-b}{2}$ B) $M(X) = \frac{a+b}{2}$ B) $M(X) = \frac{b-a}{2}$ Γ) M(X) = a+b
- 59. Дисперсия равномерно распределенной случайной величины вычисляется по формуле

- A) D(X)=b-a B) D(X)=b+a B) $D(X)=\frac{(b-a)^2}{12}$ Γ) $D(X)=\frac{(b-a)^2}{12}$
- 60. Вероятность попадания равномерно распределенной случайной величины в интервал $[\alpha; \beta] \subset [a,b]$ вычисляется по формуле:
- 61. Плотность распределения случайной величины с показательным распределением имеет вил:
 - A) $f(x) = \begin{cases} 0, x < 0, \\ \lambda e^{-\lambda x}, x \ge 0 \end{cases}$ B) $f(x) = \begin{cases} 0, x < 0, \\ \lambda e^{\lambda x}, x \ge 0 \end{cases}$ B) $f(x) = \begin{cases} 0, x < 0, \\ \lambda e^{\lambda x}, x \ge 0 \end{cases}$ B) $f(x) = \begin{cases} 0, x < 0, \\ \lambda e^{\lambda x}, x \ge 0 \end{cases}$
- 62. Функция распределения случайной величины с показательным распределением имеет вид:

A)
$$F(x) = \begin{cases} 0, x < 0, \\ e^{\lambda x}, x \ge 0 \end{cases}$$

B) $F(x) = \begin{cases} 0, x < 0, \\ 1 - e^{\lambda x}, x \ge 0 \end{cases}$
E) $F(x) = \begin{cases} 0, x < 0, \\ 1 - e^{\lambda x}, x \ge 0 \end{cases}$
 $F(x) = \begin{cases} 0, x < 0, \\ 1 - e^{\lambda x}, x \ge 0 \end{cases}$

- 63. У показательного распределения математическое ожидание и среднее квадратическое отклонение
 - А) всегда различны
 - Б) всегда различаются на единицу
 - В) всегда равны
- 64. Функция плотности нормального распределения с математическим ожиданием а и средне – квадратическим отклонением δ задается формулой:

A)
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$$
 B) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma}}$ F) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}}$ F) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{\sigma^2}}$

- 65. График плотности нормального распределения называется
- А) кривой Гаусса
- Б) кривой Бернулли
- В) кривой Пауссона
- Г) кривой Лапласа
- 66. В точке x=a кривая Гаусса имеет
- А) точку перегиба
- Б) точку минимума
- В) точку разрыва
- Г) точку максимума
- 67. Точки $x_1 = a \sigma$ и $x_2 = a + \sigma$ являются для кривой Гаусса
- А) точками перегиба
- Б) точками максимума
- В) точками минимума
- Г) точками разрыва
- 68. Параметрами нормального распределения являются:
- А) математическое ожидание и среднеквадратическое отклонение
- Б) функция распределения и функция плотности распределения
- B) функция p(x) и $\Phi(x)$
- Г) дисперсия и среднеквадратическое отклонение
- 69. Генеральная совокупность это ...
- А) вся исследуемая совокупность объектов
- Б) совокупность случайно отобранных объектов
- В) совокупность объектов, выбранных через определенный интервал
- Г) совокупность из непересекающихся групп
- 70. Выборочная совокупность это ...
- А) совокупность из непересекающихся групп
- Б) совокупность случайно отобранных объектов
- В) вся исследуемая совокупность объектов
- Г) совокупность объектов, выбранных через определенный интервал
- 71. Объем выборки это ...
- А) число, равное количеству объектов генеральной или выборочной совокупности

- Б) число, равное среднему арифметическому объектов
- В) число, равное максимальному значению совокупности
- Г) число, равное минимальному значению совокупности
- 72. При повторном отборе зарегистрированные и обследованные единицы
- А) вновь возвращаются в генеральную совокупность и снова могут принять участие в лальнейшем отборе
 - Б) в генеральную совокупность не возвращаются
- В) в генеральную совокупность возвращаются, но принять участие в дальнейшем отборе не могут
 - Г) помечаются специальным знаком
 - 73. При бесповторном отборе зарегистрированные и обследованные единицы
 - А) возвращаются в генеральную совокупность
 - Б) не возвращаются в генеральную совокупность
- В) возвращаются в генеральную совокупность и могут принять участие в дальнейшем отборе
 - Г) либо возвращаются, либо не возвращаются в генеральную совокупность
 - 74. Графическая форма задания закона распределения случайной величины это
 - Б) прямая линия А) парабола В) окружность Г) полигон
 - 75. ... это наиболее часто встречающееся значение варианты.
 - А) медиана Б) мода
 - В) размах варьирования Г) среднее значение
 - 76. ... это варианта, которая делит вариационный ряд на две равные части
 - А) медиана Б) мола
 - В) размах варьирования Г) среднее значение
 - 77. ... это разность между наибольшей и наименьшей вариантой
 - А) медиана Б) мола
 - В) размах варьирования Г) среднее значение
 - 78. Формула Стерджесса имеет вид ...
 - Б) $k=1+3.32 \lg n$ A) $k=3.32 \lg n$
 - B) $k=1-3.32 \lg n$
 - 79. Выборочная средняя вычисляется по формуле

A)
$$\bar{x}_B = \frac{1}{n} \sum_{i=1}^k x_i \cdot n_i$$
 B) $\bar{x}_B = \sum_{i=1}^k x_i \cdot n_i$

3.2. Вопросы к экзамену в устной форме

Раздел 1. Элементы линейной и векторной алгебры

- 1. Понятие и виды матриц. Транспонированная матрица.
- 2. Операции над матрицами и их свойства.
- 3. Обратная матрица и ее свойства.
- 4. Определитель матрицы и его свойства.
- 5. Миноры и алгебраические дополнения элементов определителя. Теорема о разложении определителя по элементам строки или столбца.
 - 6. Решение систем линейных уравнений методом Гаусса.
 - 7. Решение систем линейных уравнений методом обратной матрицы.
 - 8. Решение систем линейных уравнений с помощью формул Крамера.
 - 9. Векторы. Операции над векторами и их свойства.
 - 10. Действия над векторами, заданными своими координатами.

- 11. Скалярное произведение двух векторов и его свойства.
- 12. Векторное произведение двух векторов и его свойства.
- 13. Смешанное произведение трех векторов и его свойства.

Раздел 2. Аналитическая геометрия на плоскости и в пространстве

- 1. Уравнение прямой на плоскости: способы задания.
- 2. Уравнение прямой с угловым коэффициентом.
- 3. Общее уравнение прямой, его частные случаи.
- 4. Кривые второго порядка: окружность.
- 5. Кривые второго порядка: эллипс.
- 6. Кривые второго порядка: гипербола.
- 7. Кривые второго порядка: парабола.

Раздел 3. Введение в анализ

- 1. Числовые последовательности и способы их задания.
- 2. Предел числовой последовательности. Теоремы о пределах числовых последовательностей.
 - 3. Предел функции. Непрерывность функции.
 - 4. Понятие производной и ее геометрический смысл.
 - 5. Теоремы дифференциального исчисления.
 - 6. Производная сложной и обратной функции.
 - 7. Дифференциал функции и его геометрический смысл.
 - 8. Исследование функций с помощью первой производной.
 - 9. Исследование функций с помощью второй производной.

Раздел 4. Интегральное исчисление функций одной независимой переменной

- 1. Первообразная функция и неопределенный интеграл.
- 2. Вычисление неопределенных интегралов.
- 3. Методы вычисления неопределенных интегралов: метод подстановки.
- 4. Методы вычисления неопределенных интегралов: метод интегрирования по частям.
- 5. Интегрирование рациональных дробей.
- 6. Определенный интеграл и его геометрический смысл.
- 7. Формула Ньютона-Лейбница.
- 8. Приложения определенного интеграла: длина дуги кривой, площадь плоской фигуры, вычисление пути, пройденного точкой, вычисление работы силы.

Раздел 5. Теория вероятностей и основы математической статистики

- 1. Комбинаторика: размещения, сочетания, перестановки. Размещения, сочетания и перестановки с повторениями. Примеры.
 - 2. Предмет и основные определения теории вероятностей.
- 3. Классическое определение вероятности. Свойства вероятности, вытекающие из классического определения. Примеры.
- 4. Статистическое определение вероятности, его особенности и связь с классическим определением.
 - 5. Зависимые и независимые события. Условные и безусловные вероятности.
 - 6. Теоремы умножения вероятностей.
 - 7. Теоремы сложения вероятностей.
 - 8. Формула полной вероятности. Формула Байеса.
- 9. Формула Бернулли. Биномиальное распределение. Наивероятнейшее число появлений события.
- 10. Приближенные формулы в схеме Бернулли (формула Пуассона, локальная и интегральная теоремы Лапласа).
 - 11. Случайные величины и случайные события.
- 12. Дискретные и непрерывные случайные величины. Закон распределения случайной величины и способы его задания.

- 13. Числовые характеристики случайных величин.
- 14. Математическое ожидание случайной величины. Его смысл и примеры. Свойства математического ожилания.
- 15. Дисперсия и среднее квадратическое отклонение случайной величины. Их смысл и примеры вычисления. Формулы для вычисления дисперсии. Свойства дисперсии.
- 16. Математическое ожидание, дисперсия и среднее квадратическое отклонение частоты и частости.
 - 17. Важнейшие распределения случайных величин.
- 18. Нормальное распределение. Плотность нормального распределения и ее свойства. Функция распределения нормально распределенной случайной величины.
 - 19. Нормированное (стандартное) нормальное распределение.
 - 20. Функция Лапласа: график, свойства, таблицы.
- 21. Вероятность попадания нормально распределенной случайной величины в заданный интервал.
- 22. Вероятность заданного отклонения нормальной случайной величины от своего математического ожидания. Правило трех сигм.
- 23 Закон больших чисел. Неравенство Чебышева. Дисперсия среднего арифметического.
 - 24. Закон больших чисел. Теорема Чебышева. Теорема Бернулли.
- 25. Системы случайных величин. Закон распределения двумерной случайной величины.
- 26. Системы случайных величин. Числовые характеристики двумерной случайной величины.
 - 27. Предмет и основные задачи математической статистики.
- 28. Генеральная и выборочные совокупности случайных величин. Первичная обработка выборочных данных группировка, построение гистограммы распределения случайных величин.
- 29. Эмпирические интегральная и дифференциальная функции распределения. Их свойства.
- 30. Выборочные числовые характеристики случайных величин (точечные оценки) дисперсии, математического ожидания, коэффициентов асимметрии, эксцесса, корреляции.
- 31. Статистические оценки параметров распределения (сущность теории оценивания): несмещенность, состоятельность, эффективность оценок.
- 32. Точечные оценки: выборочная средняя, дисперсия, среднее квадратическое отклонение.
 - 33. Точечная оценка генеральной средней по выборочной средней.
- 34. Точечная оценка генеральной дисперсии. «Исправленные» выборочная дисперсия и среднее квадратическое отклонение.
 - 35. Интервальные оценки. Точность оценки. Доверительная вероятность.
- 36. Доверительный интервал для оценки математического ожидания при известном и неизвестном σ .
 - 37. Распределение Стьюдента.
- 38. Доверительный интервал для оценки среднеквадратического отклонения нормального распределения

3.3. Образцы контрольных работ

Раздел 1. Элементы линейной и векторной алгебры

Контрольная работа №1. Матрицы. Определители

1. Даны матрицы
$$A = \begin{pmatrix} 1 & 3 & -2 \\ 0 & -1 & 4 \\ 5 & 2 & 6 \end{pmatrix}, B = \begin{pmatrix} 3 & -1 \\ 2 & 1 \\ 4 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 0 & 2 \end{pmatrix}.$$

Вычислить: 1) 2A + BC; 2) $B^{T} + C$; 3) A^{2} ; 4) AB + 4B; 5) B + 3C.

2. Вычислить следующие определители:

a)
$$\begin{vmatrix} 3 & -1 & -4 \\ 2 & 5 & 1 \\ 1 & -1 & 2 \end{vmatrix}$$
, 6) $\begin{vmatrix} -2 & 3 & 1 & -1 \\ 1 & 4 & -2 & 0 \\ -1 & 2 & 1 & 5 \\ 2 & -1 & 3 & 4 \end{vmatrix}$

- 3. Дана матрица: $A = \begin{pmatrix} -3 & 1 \\ 2 & 3 \end{pmatrix}$. Показать, что $(A^{-1})^{-1} = A$.
- 4. Определить при каких λ существует матрица, обратная данной:

$$A = \begin{pmatrix} 2 & \lambda & -1 \\ 1 & 3 & 4 \\ -1 & 1 & 1 \end{pmatrix}.$$

5. Найти матрицу, обратную матрице:

$$A = \begin{pmatrix} -1 & 3 & 1 \\ 1 & 2 & 0 \\ 3 & -1 & 1 \end{pmatrix}.$$

Контрольная работа №2. Векторная алгебра

Даны координаты четырех точек:

$$A(1; -3; 1), B(2; 1; 2), C(-1; 3; 2), D(1; 1; 3)$$

Найти:

- 1) координаты векторов \overline{AB} , \overline{CD} , $2\overline{AB}$ + $3\overline{CD}$:
- 2) длины векторов \overline{AC} , \overline{BD} , $2\overline{BC}$ $3\overline{AD}$;
- 3) скалярное произведение векторов \overline{AB} и \overline{AC} ;
- 4) косинус угла между векторами \overline{BC} и \overline{BD} ;
- 5) проекцию вектора \overline{AB} на направление вектора \overline{CD} ;
- 6) векторное произведение векторов \overline{AB} и \overline{AD} ;
- 7) площадь треугольника *ABD*;
- 8) синус угла между векторами \overline{AB} и \overline{CD} ;
- 9) смешанное произведение $\overline{AB} \cdot \overline{CD} \cdot \overline{b}$, где $\overline{b} = \overline{i} 2\overline{j} + 4\overline{k}$;
- 10) объем пирамиды ABCD, длину высоты, опущенной из вершины B.

Раздел 2. Аналитическая геометрия на плоскости и в пространстве

Контрольная работа №3. Аналитическая геометрия на плоскости

1. Даны координаты вершин треугольника АВС:

$$A(3; 2), B(-4; 3), C(-1; -2)$$

Требуется составить уравнения:

- 1) стороны *AB*:
- 2) медианы AK, проведенной из точки A;
- 3) высоты BM, проведенной из точки B.

Сделать чертеж в системе координат.

- 2. Дано уравнение кривой 2-го порядка. Привести заданное уравнение к каноническому виду, определить тип кривой, найти ее характерные элементы.
 - 1) $2x^2 4v^2 12x + 16v 6 = 0$;
 - 2) $3x^2 6x y + 4 = 0$;
- $x^2 + 4y^2 6x + 8y + 5 = 0$, x 2y 5 = 0 найти точки пересечения кривой и заданной прямой. Построить в исходной системе координат.

Контрольная работа №4. Аналитическая геометрия в пространстве

Даны координаты точек – вершин пирамиды *ABCD*:

$$A(1;3;6), B(2;2;1), C(-1;0;1), D(-4;5;-3)$$

Требуется:

- 1) найти уравнение плоскости грани АВС;
- 2) составить параметрические уравнения прямой AB;
- 3) составить канонические уравнения высоты пирамиды DK, проведенной из вершины
- 4) найти координаты точки пересечения *DK* и грани *ABC*;
- 5) найти угол β между ребрами AB и BC;
- 6) найти угол γ между ребром AD и гранью ABC.

Сделать чертеж пирамиды в системе координат.

Разлел 3. Ввеление в анализ

Контрольная работа №5. Предел функции

Вычислить пределы:

D:

1)
$$\lim_{x \to -2} \frac{2x^2 - x - 10}{x^2 + 3x + 2}$$
 2) $\lim_{x \to \infty} \frac{2x^2 + 5x^4 + 4}{3x^3 + 2x^2 + 5}$ 3) $\lim_{x \to 0} \frac{\sqrt{9 - x} - 3}{\sqrt{x + 4} - 2}$

2)
$$\lim_{x \to \infty} \frac{2x^2 + 5x^4 + 4x^4}{3x^3 + 2x^2 + 4x^4}$$

3)
$$\lim_{x \to 0} \frac{\sqrt{9-x} - 3}{\sqrt{x+4} - 2}$$

4)
$$\lim_{x \to 0} \frac{\sin^2 6x}{4x^2}$$

5)
$$\lim_{x \to \infty} \left(\frac{2x-3}{2x+5} \right)^x$$

4)
$$\lim_{x \to 0} \frac{\sin^2 6x}{4x^2}$$
 5) $\lim_{x \to \infty} \left(\frac{2x-3}{2x+5}\right)^{x-1}$ 6) $\lim_{x \to \infty} \frac{4x^2 - 5x + 1}{3x - x^2 - 2}$

7)
$$\lim_{x \to 1} \frac{(2x^2 - x - 1)^2}{x^3 + 2x^2 - x - 2}$$
 8) $\lim_{x \to \infty} (\sqrt[3]{x + 1} - \sqrt[3]{3x + 1})$ 9) $\lim_{x \to 0} \frac{1 - \cos 2x}{x \sin x}$

8)
$$\lim_{x \to \infty} (\sqrt[3]{x+1} - \sqrt[3]{3x+1})$$

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x \sin x}$$

Контрольная работа №6. Производная функции и ее применение

1. Найти производные первого порядка данных функций, используя правила вычисления производных:

1)
$$y = 2x^5 - \frac{4}{x^3} + \frac{1}{x} + 3\sqrt{x}$$
; 2) $y = \sqrt{x} \cdot tg3x$; 3) $y = \frac{\ln x}{4 - 3\cos x}$;
4) $y = (\sin x)^{arctgx}$; 5)
$$\begin{cases} x = \arcsin 2t, \\ y = \frac{1}{x^3 + x^2}; \end{cases}$$
 6) $y = x + arctgy$.

$$3) y = \frac{\ln x}{4 - 3\cos x}$$

$$4) \ y = (\sin x)^{arctgx};$$

5)
$$\begin{cases} x = \arcsin 2t, \\ y = \frac{1}{1 - 4t^2}; \end{cases}$$

2. Вычислить пределы, используя правило Лопиталя:

1)
$$\lim_{x \to 3} \frac{(x-3)^2}{\sin^2(x-3)}$$
; 2) $\lim_{x \to 0} x \cdot \sin \frac{1}{x}$.

2)
$$\lim_{x \to 0} x \cdot \sin \frac{1}{x}$$
.

3. Построить график функции y = f(x), используя общую схему исследования:

$$y = \frac{4x^3 - 3x}{4x^2 - 1} \, .$$

Раздел 4. Интегральное исчисление функций одной независимой переменной

Контрольная работа №7. Неопределенный и определенный интегралы

1. Вычислить неопределенные интегралы:

1)
$$\int (3^x + \sqrt[3]{x} - \frac{1}{x}) dx$$
; 2) $\int (\frac{1}{\sqrt[3]{x}} + \frac{2}{\sqrt{x}}) dx$; 3) $\int \frac{x dx}{\sqrt{x^2 + 7}}$;

$$\int \left(\frac{3\sqrt{x}}{\sqrt[3]{x}} + \frac{7}{\sqrt{x}}\right) dx$$

$$3) \int \frac{xdx}{\sqrt{x^2 + 7}};$$

$$4) \int (2x-5)e^{3x}dx$$

4)
$$\int (2x-5)e^{3x}dx$$
; 5) $\int \frac{7-3x}{x^2-4x+8}dx$; 6) $\int \frac{xdx}{x^2-5x+6}$;

$$6) \int \frac{xdx}{x^2 - 5x + 6};$$

2. Вычислить площадь фигуры, ограниченной линиями: $v = 2x - x^2$, v = -x.

Раздел 5. Элементы теория вероятностей и математической статистики

Контрольная работа №8. Теория вероятностей

- 1. В группе 16 студенток и 6 студентов. Найти вероятность того, что среди четырех наугад выбранных учащихся окажется одна студентка и 3 студента.
- 2. Среди сотрудников фирмы 28% знают английский язык, 30% немецкий, 42% французский; английский и немецкий 8%, английский и французский 10%, немецкий и французский 5%, все три языка 3%. Найти вероятность того, что случайно выбранный сотрудник фирмы: а) знает английский или немецкий; б) знает английский, немецкий или французский; в) не знает ни один из перечисленных языков.
- 3. В магазине имеются в продаже однотипные изделия, изготовленые двумя заводами. Заводом №1 изготовлены 60% изделий, а остальные изготовлены заводом №2. Завод №1 в среднем выпускает 2% брака, а завод №2 5% брака. Какова вероятность того, что купленное в магазине изделие окажется бракованным?
- 4. Производиться испытание пяти приборов, каждый из которых выходит из строя с вероятностью 0,1. Найти вероятность того, что хотя бы два прибора выйдут из строя при испытании.
- 5. Фабрика выпускает 70% изделий высшего сорта. Найти вероятность того, что в партии из 1000 изделий число первосортных заключено между 652 и 760.
- 6. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины, заданной законом распределения:

X	2	3	5
p	0,1	0,6	0,3

7. Непрерывная случайная величина задана функцией распределения вероятностей F(x). Требуется: а) найти плотность распределения вероятностей f(x), б) найти математическое ожидание, дисперсию, среднее квадратическое отклонение; в) вычислить вероятность попадания случайной величины в интервал (1; 4); г) построить графики функции распределения F(x) и плотности распределения f(x).

$$F(x) = \begin{cases} 0, \text{ где } x \le 0, \\ \frac{x^2}{25}, \text{ где } 0 < x \le 5, \\ 1, \text{ где } x > 5. \end{cases}$$

Контрольная работа №9. Основы математической статистики

Известны X_1, X_2, \dots, X_n – результаты независимых наблюдений над случайной величиной X.

Задание

- 1. Сгруппировать эти данные в интервальную таблицу.
- 2. Построить гистограмму, полигон частот и эмпирическую функцию распределения.
- 3. Найти и построить моду и медиану.
- 4. Найти несмещенную оценку математического ожидания и дисперсии случайной величины X.
- 5. Найти интервальные оценки математического ожидания и дисперсии случайной величины X с надежностью $\gamma = 0.99$ и $\gamma = 0.95$.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕ-НИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Лекции оцениваются по посещаемости, активности, умению выделить главную мысль.

Практические занятия оцениваются по самостоятельности выполнения работы, грамотности в оформлении, правильности выполнения.

Самостоятельная работа оценивается по качеству и количеству выполненных домашних или контрольных работ, грамотности в оформлении, правильности выполнения.

Промежуточная аттестация проводится в форме экзамена.

Для получения экзамена студент очного обучения должен в течение семестра активно посещать лекции и принимать участие в обсуждении вопросов касающихся изучаемой темы, выполнить и защитить отчеты по практическим занятиям.

Для получения экзамена студент заочник должен написать контрольную работу, активно посещать лекции и принимать участие в обсуждении вопросов касающихся изучаемой темы.

Критерии оценки экзамена могут быть получены в тестовой форме: количество баллов или удовлетворительно, хорошо, отлично. Для получения соответствующей оценки на зачете или экзамене по курсу используется накопительная система балльно-рейтинговой работы студентов. Итоговая оценка складывается из суммы баллов или оценок, полученных по всем разделам курса и суммы баллов полученной на зачете или экзамене.

Таблица 4.1 - Критерии оценки уровня знаний студентов с использованием теста на зачете или экзамене по учебной дисциплине

Оценка	Характеристики ответа студента
Отлично	86-100 % правильных ответов
Хорошо	71-85 %
Удовлетворительно	51- 70%
Неудовлетворительно	Менее 51 %

Количество баллов и оценка неудовлетворительно, удовлетворительно, хорошо, отлично определяются программными средствами по количеству правильных ответов к количеству случайно выбранных вопросов.

Критерии оценивания компетенций следующие

- 1. Ответы имеют полные решения (с правильным ответом). Их содержание свидетельствует об уверенных знаниях обучающегося и о его умении решать профессиональные задачи, оценивается в 5 баллов (отлично);
- Более 75 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует о достаточных знаниях обучающегося и его умении решать профессиональные задачи – 4 балла (хорошо);
- 3. Не менее 50 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует об удовлетворительных знаниях обучающегося и о его ограниченном умении решать профессиональные задачи, соответствующие его будущей квалификации 3 балла (удовлетворительно);
- 4. Менее 50 % ответов имеют решения с правильным ответом. Их содержание свидетельствует о слабых знаниях обучающегося и о его неумении решать профессиональные задачи -2 балла (неудовлетворительно).