

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Казанский государственный аграрный университет» (ФГБОУ ВО Казанский ГАУ)

Институт механизации и технического сервиса

Кафедра общеинженерные дисциплины

УТВЕРЖДАЮ Первый проректор — проректор по учебновоспрательной работе, проф.

Б.Г. Зиганшин

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

ТЕОРИЯ МЕХАНИЗМОВ И МАШИН

(приложение к рабочей программе дисциплины)

Специальность подготовки **23.05.01** Наземные транспортно-технологические средства

Специализация Автомобили и тракторы

> Уровень специалитета

Форма обучения очная, заочная

Год поступления обучающихся: 2020

Казань - 2020

Составитель: Яхин С.М., д.т.н., профессор

Оценочные средства обсуждены и одобрены на заседании кафедры «Общеинженерные дисциплины» «27» апреля 2020 года (протокол № 11)

Заведующий кафедрой, к.т.н., доцент

Пикмуллин Г.В.

Рассмотрены и одобрены на заседании методической комиссии Института механизации и технического сервиса «12» мая 2020г. (протокол № 8)

Пред. метод. комиссии, к.т.н., доцент

_ Шайхутдинов Р.Р.

Согласовано: Директор Института механизации и технического сервиса, д.т.н., профессор

Яхин С.М.

Протокол Ученого совета Института механизации и технического сервиса
№ 10 от «14» мая 2020 г.

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения ОПОП специалитета по специальности 23.05.01 Наземные транспортно-технологические средства, специализация «Автомобили и тракторы», обучающийся должен овладеть следующими результатами обучения по дисциплине «Теория механизмов и машин».

Таблица 1.1 – Требования к результатам освоения дисциплины

Код компетенции	Этапы освоения компетенции	Перечень планируемых результатов обучения по дисциплине
ОПК-4 способностью к самообразованию и использованию в практической деятельности новых знаний и умений, в том числе в областях знаний, непосредственно не связанных со сферой профессиональной деятельности	Первый этап	Знать: методы самообразования и использования в практической деятельности новых знаний и умений по теории механизмов и машин, в том числе в областях знаний, непосредственно не связанных со сферой профессиональной деятельности. Уметь: организовать самообразование по теории механизмов и машин и использовать в практической деятельности новых знаний. Владеть: методами по самообразованию по теории механизмов и машин и использованию в практической деятельности новых знаний.

3

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Таблица 2.1 – Показатели и критерии определения уровня сформированности компетенций

Компетенция,	Планируемые	рии определения уровня сформированности компетенции Критерии оценивания результатов обучения			
этапы освоения	результаты				-
компетенции	обучения	2	3	4	5
ОПК-4	Знать:	Отсутствуют	Неполные	Сформированные, но	Сформированные
способностью к	методы	представления о	представления о	содержащие	систематические
самообразованию	самообразования и	методах	методах	отдельные пробелы	представления о
и использованию в	использования в	самообразования и	самообразования и	представления о	методах
практической	практической	использования в	использования в	методах	самообразования и
деятельности	деятельности	практической	практической	самообразования и	использования в
новых знаний и	новых знаний и	деятельности новых	деятельности новых	использования в	практической
умений, в том	умений по теории	знаний и умений по	знаний и умений по	практической	деятельности новых
числе в областях	механизмов и	теории механизмов	теории механизмов и	деятельности новых	знаний и умений по
знаний,	машин, в том числе	и машин, в том	машин, в том числе в	знаний и умений по	теории механизмов и
непосредственно	в областях знаний,	числе в областях	областях знаний,	теории механизмов и	машин, в том числе в
не связанных со	непосредственно не связанных со	знаний,	непосредственно не	машин, в том числе в	областях знаний,
сферой	сферой	непосредственно не	связанных со сферой	областях знаний,	непосредственно не
профессиональной	профессиональной	связанных со	профессиональной	непосредственно не	связанных со сферой
деятельности	деятельности.	сферой	деятельности.	связанных со сферой	профессиональной
Первый этап	деятельности	профессиональной		профессиональной	деятельности.
		деятельности.		деятельности.	
	Уметь:	Не умеет .	В целом успешно, но	В целом успешное, но	Сформированное
	организовать	организовать	не систематически	содержащее	умение организовать
	самообразование по	самообразование по	организовывает	отдельные пробелы в	самообразование по
	теории механизмов	теории механизмов	самообразование по	умении организовать	теории механизмов и
	и машин и использовать в	и машин и	теории механизмов и	самообразование по	машин и
	практической	использовать в	машин и использует	теории механизмов и	использовать в
	деятельности новых	практической	в практической	машин и использ-	практической
	знаний.	деятельности новых	деятельности новых	овать в практической	деятельности новых
		знаний.	знаний.	деятельности новых	знаний.
				знаний.	

4

Владеть:	Не владеет	В целом успешное, но	В целом успешное, но	Успешное и
методами по	методами по	не систематическое	содержащее	систематическое
самообразованию	самообразованию по	применение методов	отдельные пробелы в	применение методов
по теории	теории механизмов	по самообразованию	применении методов	по самообразованию
механизмов и	и машин и	по теории	по самообразованию	по теории
машин и	использованию в	механизмов и машин	по теории	механизмов и машин
использованию в практической	практической деятельности новых	и использованию в практической	механизмов и машин и использованию в	и использованию в практической
деятельности	знаний.	деятельности новых	практической	деятельности новых
новых знаний.		знаний.	деятельности новых	знаний.
			знаний.	

Описание шкалы опенивания

- 1. Оценка «неудовлетворительно» ставится студенту, не овладевшему ни одним из элементов компетенции, т.е. обнаружившему существенные пробелы в знании основного программного материала по дисциплине, допустившему принципиальные ошибки при применении теоретических знаний, которые не позволяют ему продолжить обучение или приступить к практической деятельности без лополнительной полготорки по ланной лиспиплине
- 2. Оценка «удовлетворительно» ставится студенту, овладевшему элементами компетенции «знать», т.е. проявившему знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности, знакомому с основной рекомендованной литературой, допустившему неточности в ответе на экзамене, но в основном обладающему необходимыми знаниями для их устранения при корректировке со стороны экзаменатора.
- 3. Оценка «хорошо» ставится студенту, овладевшему элементами компетенции «знать» и «уметь», проявившему полное знание программного материала по дисциплине, освоившему основную рекомендованную литературу, обнаружившему стабильный характер знаний и умений и способному к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности
- 4. Оценка «отлично» ставится студенту, овладевшему элементами компетенции «знать», «уметь» и «владеть», проявившему востронние и глубокие знания программного материала по дисциплине, освоившему основную и дополнительную литературу, обнаружившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний.
 - 5. Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».
 - 6. Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно»

4

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ТИПОВЫЕ КОНТРОЛЬНЫЕ ВОПРОСЫ

Раздел 1. ОСНОВЫ СТРОЕНИЯ МАШИН И МЕХАНИЗМОВ

- 1. Дайте определение понятиям механизм и машина.
- 2. Может ли звено механизма состоять из одной детали?
- 3. Какие звенья механизма называются входными, а какие выходными?
- 4. Перечислите основные виды машин.
- 5. Дайте определение понятию кинематическая пара.
- 6. Какие поверхности звеньев называют элементами кинематической пары?
- 7. Какие кинематические пары относятся к высшим, а какие к низшим?
- 8. Изложите основные принципы классификации кинематических пар.

Какое максимальное число связей возможно в кинематической паре?

- 9. Может ли кинематическая пара первого класса иметь три независимых поступательных движения?
- 10. Дайте определение понятию кинематическая цепь.
- 11. В чем отличие между простыми и сложными кинематическими цепями?
- 12. Какие кинематические цепи называют замкнутыми, а какие незамкнутыми?
- 13. Какой вид имеет структурная формула кинематической цепи общего вида?
- 14. Перечислите основные виды механизмов.

Раздел 2. СТРУКТУРНЫЙ АНАЛИЗ И СИНТЕЗ МЕХАНИЗМОВ

- 15. По какой формуле определяется степень свободы плоского механизма? Кто является её автором?
- 16. Какие координаты называются обобщенными?
- 17. Какое минимальное количество начальных звеньев может быть у механизма?
- 18. Чем отличается структура плоских и пространственных механизмов?
- 19. Что такое избыточные связи?
- 20. Какой метод используется для выявления избыточных связей?
- 21. Каким образом оптимизируют структуру механизмов при их синтезе?
- 22. Какие связи в механизме называют пассивными?
- 23. Дайте определение понятию структурная группа Ассура.
- 24. Каково условие существования структурной группы Ассура?
- 25. С какой целью выполняется синтез заменяющих механизмов?
- 26. Как определяется класс структурной группы по классификации И.И.Артоболевского?
- 27. Какие виды могут быть у простейших структурных групп Ассура, состоящих из двух звеньев и трех кинематических пар?
- 28. Что называется порядком структурной группы Ассура?
- 29. Каков принцип образования механизмов по Ассуру?

Раздел 3. КИНЕМАТИЧЕСКИЙАНАЛИЗ МЕХАНИЗМОВ

- 30. Перечислите основные задачи кинематического анализа.
- 31. Какие звенья механизма называют входными, а какие выходными?

- 32. Как определить мгновенные центры вращения в абсолютном и относительном движении звеньев четырехзвенного шарнирного механизма?
- 33. В какой форме могут быть заданы законы движения ведущих звеньев?
- 34. Что представляют собой аналоги линейных и угловых скоростей?
- 35. Что называется передаточным отношением?
- 36. Что представляют собой аналоги линейных и угловых ускорений?
- 37. Какие методы используются для определения кинематических характеристик механизма?
- 38. Как определить траекторию движения точки звена механизма графическим методом?
- 39. Как выполняется кинематический анализ механизма методом векторных уравнений?
- 40. Изложите последовательность решения векторных уравнений графическим метолом.
- 41. Что называют передаточной функцией механизма?
- 42. Перечислите основные свойства планов скоростей и ускорений.
- 43. Изложите порядок графического дифференцирования и интегрирования кинематической диаграммы.
- 44. Как определяются масштабные коэффициенты кинематических диаграмм и планов скоростей и ускорений?

Раздел 4. ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМА

- 45. Перечислите основные задачи динамического исследования механизма.
- 46. Какими методами выполняется динамический анализ механизма?
- 47. Как классифицируются силы, действующие на звенья механизма?
- 48. Перечислите способы задания сил в механизме.
- 49. Каким образом может быть построена диаграмма работ сил, действующих на звено механизма?
- 50. Перечислите механические характеристики машины.
- 51. Как определяются силы инерции и моменты пар сил инерции при поступательном, вращательном и плоско-параллельном движении?
- 52. В какой последовательности выполняется силовой расчет плоского механизма методом планов сил?
- 53. Как определяется уравновешивающая сила (или момент) методом рычага Жуковского?
- 54. Как определяются силы трения в кинематических парах механизма?
- 55. Изложите сущность методов приведения масс и сил в механизме.
- 56. Что представляет собой динамическая модель механизма?
- 57. Перечислите основные формы уравнения движения механизма, дайте их характеристику и укажите методы их решения.
- 58. Как учитывается трение в кинематических парах при силовом анализе механизма?
- 59. Что называют КПД механизма? Приведите формулы для определения КПД механизмов при последовательном, параллельном и смешанном энергетических потоках.

Раздел 5. УРАВНОВЕШИВАНИЕ МАСС И СИЛ ИНЕРЦИИ ЗВЕЬЕВ МЕХАНИЗМА

- 60. Перечислите виды колебаний звеньев механизма и дайте их характеристику.
- 61. Какими параметрами характеризуются свободные колебания звеньев?
- 62. Какие колебания в технике называют вибрациями?

- 63. Как определить положение общего центра масс механизма?
- 64. Что понимают под термином уравновешивание механизма?
- 65. Что является необходимым условием для уравновешивания главного вектора сил инерции звеньев плоского механизма?

Дайте определение понятиям статическая и динамическая неуравновешенность.

- 66. Какие причины вызывают демпфирование свободных колебаний звеньев?
- 67. Укажите способы гашения вынужденных колебаний звеньев.
- 68. Что принимают за меру статической неуравновешенности?
- 69. Какие способы уравновешивания масс плоских механизмов Вы знаете?
- 70. При каких условиях возникает явление резонанса?
- 71. При каком соотношении частот собственных и вынужденных колебаний упругое крепление машины существенно уменьшает силу, передаваемую на фундамент?
- 72. Перечислите способы устранения колебаний в кулачковых и рычажных механизмах.
- 73. В каких случаях вибрации используются как технологический фактор нормального функционирования устройств?

Раздел 6. СИНТЕЗ МЕХАНИЗМОВ

- 74. Дайте определение понятию синтез механизмов.
- 75. Перечислите основные и дополнительные условия синтеза.
- 76. Какие функции называются целевыми?
- 77. Как выполняется синтез механизмов по методу приближения функций?
- 78. Как формулируется теорема Робертса Чебышева?
- 79. Каково условие существования кривошипа?
- 80. Сформулируйте и докажите основную теорему зацепления плоских профилей.
- 81. Как осуществляется синтез эвольвентных профилей по методу последовательных положений исходного производящего контура? Перечислите основные свойства эвольвенты.
- 82. Укажите основные преимущества и недостатки зубчатых передач Новикова, а также передач с эвольвентным и циклоидальным профилем зубьев.
- 83. Перечислите основные параметры зубчатого колеса с эвольвентным профилем зубьев.
- 84. Что такое коэффициент перекрытия зубчатой передачи? Каков его физический смысл и как он определяется?
- 85. В чем заключаются условия соосности, сборки и соседства, соблюдаемые при проектировании планетарных и дифференциальных передач?
- 86. Дайте определение понятию мертвый ход и укажите способы его устранения.
- 87. Как осуществляется выбор допускаемого угла давления при проектировании кулачковых механизмов?
- 88. Какие методы проектирования профилей кулачков Вы знаете?

ТИПОВЫЕ ВОПРОСЫ ТЕСТА ДЛЯ ЭКЗАМЕНА

по дисциплине «Теория механизмов и машин»

1. Что называется кинематической парой?

- 1. Жёсткое соединение двух звеньев;
- 2. Жёсткое соединение нескольких звеньев;
- 3. Подвижное соединение двух звентев.

2. Сколько подвижностей имеет поступательная пара?

- 1. Одну; 2. Две; 3. Три; 4. Четыре.
- 3. Сколько подвижностей имеет вращательная пара?
 - 1. Одну; 2. Две; 3. Три; 4. Четыре.

4. Сколько подвижностей имеет цилиндрическая пара (цилиндрический шарнир)?

1. Одну; 2. Две; 3. Три; 4. Четыре.

5. Сколько подвижностей имеет шаровая пара (шаровой шарнир)?

1. Одну; 2. Две; 3. Три; 4. Четыре.

6. Сколько подвижностей имеет шаровая пара с пальцем?

1. Одну; 2. Две; 3. Три; 4. Четыре.

7. Какая кинематическая пара изображена на рисунке?

- 1. Поступательная;
- 2. Вращательная;
- 3. Цилиндрическая;
- 4. Шаровая с пальцем.

- 1. Поступательная;
- 2. Вращательная;
- 3. Цилиндрическая;
- 4. Шаровая.

9. Какая кинематическая пара изображена на рисунке?

- 1. Поступательная:
- 2. Вращательная;
- 3. Цилиндрическая;
- 4. Шаровая.

A

10. Какая кинематическая пара изображена на рисунке?

- 1. Цилиндрическая;
- 2. Поступательная;
- 3. Шаровая;
- 4. Вращательная.

11. Какая кинематическая пара изображена на рисунке?

- 1. Цилиндрическая;
- 2. Вращательная;
- 3. Поступательная;
- 4. Шаровая с пальцем.

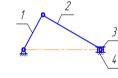
12. Структурная формула плоского шарнирно-рычажного механизма записывается следующим образом:

- 1. $W = 3(n-1) + P_1 + P_2$;
- 2. $W = 3(n+1) 2P_1 P_2$;
- 3. $W = 3(n-1) + 2P_1 P_2$;
- 4. $W = 3(n-1) 2P_1 P_2$:

13. В структурной формуле плоского шарнирно-рычажного механизма $W=3(n-1)-2P_1-P_2$ число п означает:

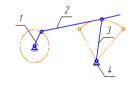
- 1. число координат:
- 2. число звеньев;
- 3. число кинематических пар.

14. В структурной формуле пространственного шарнирно-рычажного механизма $W = 6(n-1) - 5P_1 - 4P_2 - 3P_3 - 2P_4 - P_5$ число п означает:

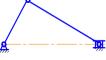

- 1. число кинематических пар:
- 2. число координат;
- 3. число звеньев.

15. Структурная формула пространственного шарнирно-рычажного механизма записывается следующим образом:

- 1. $W = 6(n-1) 5P_5 4P_4 3P_3 2P_2 P_1$;
- 2. $W = 6(n + 1) 5P_5 4P_4 3P_3 2P_2 P_1$;
- 3. $W = 6(n-1) 5P_1 4P_2 3P_3 2P_4 P_5$;
- 4. $W = 6(n-1) + 5P_1 + 4P_2 + 3P_3 + 2P_4 + P_5$.


16. Изображённый на рисунке механизм имеет степень подвижности, равную:

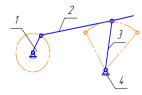
- 1. W=1;
- 2. W=2:
- 3. W=3:
- 4. W=4.


17. Изображённый на рисунке механизм имеет степень подвижности, равную:

- 1. W=4;
- 2. W=3:
- 3. W=2:
- 4. W=1.

18. Показанный на рисунке механизм называется:

- 1. Кулисным;
- 2. Кривошипно-балансирным;
- 3. кривошипно-ползунным;
- 4. кулачковым.

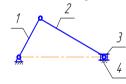

19. Показанный на рисунке механизм называется:

- 1. Кривошипно-ползунным;
- 2. Кулисным;
- 3. Кулачковым;
- 4. Кривошипно-балансирным.

20. Какое из звеньев в данном механизме является балансиром?

- 1. Звено 1:
- 2. Звено 2;
- 3. Звено 3;
- 4. Звено 4.

21. Звено называется ведущим, если приложенные к нему сила или момент направлены:

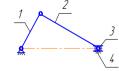

- 1. в сторону скорости звена;
- 2. перпендикулярно скорости звена;
- 3. в сторону ускорения звена;
- 4. перпендикулярно ускорению звена.

22. Звено называется ведомы, если приложенные к нему сила или момент направлены:

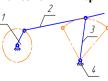
- 1. в сторону скорости звена;
- 2. перпендикулярно скорости звена;
- 3. противоположно скорости звена;
- 4. противоположно ускорению звена.

23. При каком входном звене возможны "мёртвые" положения механизма?

- 1. Звене 1:
- 2. Звене 2:
- 3. Звене 3;
- 4. Звене 4.


24. Какое из звеньев в данном механизме называется ползуном?

- 1. Звено 1:
- 2. Звено 2:
- 3. Звено 3:
- 4. Звено 4.


25. Какое из звеньев в данном механизме называется шатуном?

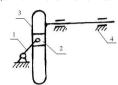
- 1. Звено 4;
- 2. Звено 3;
- 3. Звено 2;
- 4. Звено 1.

26. При каком входном звене возможны "мёртвые" положения механизма?

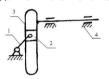
- 1. Звене 3;
- Звене 3;
 Звене 2:
- 3. Звене 4:
- 4. Звене 1.

27. Какое из звеньев в данном механизме называется кривошипом?

- 1. Звено 3:
- 2. Звено 4:
- 3. Звено 1;
- 4. Звено 2.


28. Какое из звеньев в данном механизме называется шатуном?

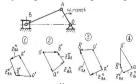
- 1. Звено 4:
- 2. Звено 1;
- 3. Звено 3;
- 4. Звено 2.


29. Какое из звеньев в данном механизме называется кулисой?

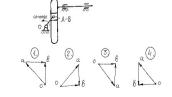
- 1. Звено 1:
- 2. Звено 2;
- 3. Звено 3;
- 4. Звено 4.

30. Какое из звеньев в данном механизме называется кривошипом?

- 1. Звено 1;
- 2. Звено 4:
- 3. Звено 2:
- 4. Звено 3.



31 Укажите, какой из планов скоростей построен правильно:



32 Укажите, какой из планов ускорений построен правильно:

33. Укажите, какой из планов скоростей построен правильно:

34. Ускорение Кориолиса будет присутствовать при определении ускорения точки:

- 1. A;
- 2. B;
- 3. C;
- 4. ускорение Кориолиса отсутствует.

35. Ускорение Кориолиса определяется по формуле:

$$1.a_{\kappa op} = \frac{2 \cdot \omega_{nepe\text{-M}}}{V_{omnocum}}; \quad 2.a_{\kappa op} = 2 \cdot \omega_{nepe\text{-M}} \cdot V_{omnocum} \quad 3.a_{\kappa op} = 2 \cdot \omega_{nepe\text{-M}} + V_{omnocum} \quad 4.a_{\kappa op} = 2 \cdot \omega_{nepe\text{-M}} - V_{omnocum}$$

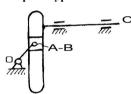
36. Скорость точки В определяется векторным уравнением:

1.
$$\overline{V}_B = \overline{V}_A - \overline{V}_{BA}$$
;

2.
$$\overline{V}_B = \overline{V}_O + \overline{V}_{BO}$$
;

3.
$$\overline{V}_B = \overline{V}_A + \overline{V}_{BA}$$
;

4.
$$\overline{V}_B = \overline{V}_O - \overline{V}_{BO}$$
.

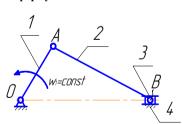

37. Скорость точки В определяется векторным уравнением:

1.
$$\overline{V}_B = \overline{V}_O + \overline{V}_{BO}$$
;

2.
$$\overline{V}_B = \overline{V}_A + \overline{V}_{BA}$$
;

3.
$$\overline{V}_B = \overline{V}_C + \overline{V}_{BC}$$
;

4.
$$\overline{V}_B = \overline{V}_C - \overline{V}_{BC}$$
.

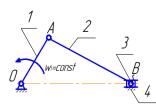

38. Скорость точки А определяется по формуле:

1.
$$V_A = \omega_1^2 \cdot l_1$$
;

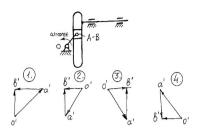
$$2. V_A = \omega_1 \cdot l_2;$$

$$3. V_A = \frac{\omega_1}{l_1};$$

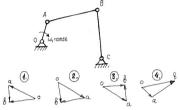
4.
$$V_A = \omega_1 \cdot l$$
.


39 Ускорение точки А определяется по формуле:

$$1. \ a_A = \omega_1 \cdot l_1^2;$$


$$2. \ a_{\scriptscriptstyle A} = \omega_1 \cdot l_2^2;$$

3.
$$a_4 = \omega_1^2 \cdot l_1$$
;


$$4. \ a_{\scriptscriptstyle A} = \omega_{\scriptscriptstyle 1}^2 \cdot l_{\scriptscriptstyle 2}.$$

40. Укажите, какой из планов ускорений построен правильно:

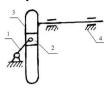
41. Укажите, какой из планов скоростей построен правильно:

42. Укажите, какой из планов ускорений построен правильно:

43. Укажите, какое из звеньев в данном механизме является кулисой:

- 1. Звено 1:
- 2. Звено 2;
- 3. Звено 3:
- 4. Звено 4.

44 Плоским называется механизм, точки звеньев которого описывают траектории, лежащие:


- 1. В одной плоскости;
- 2. В параллельных плоскостях;
- 3. В перпендикулярных плоскостях;
- 4. В непараллельных и неперпендикулярных плоскостях.

45. Пространственным называется механизм, точки звеньев которого описывают траектории, лежащие:

- 1. В одной плоскости;
- 2. В параллельных плоскостях;
- 3. В перпендикулярных плоскостях;
- 4. В непараллельных и неперпендикулярных плоскостях.

46. При каком входном звене возможны "мёртвые" положения механизма?

- 1. Звене 1;
- 2. Звене 2;
- 3. Звене 3;
- 4. Звене 4.

47. Ускорение Кориолиса будет присутствовать при определении ускорения точки:

- 1. A;
- 2. B;
- 3. C;
- 4. D.

48. Главный вектор всех сил, приложенных к звену механизма (равнодействующая сила) определяется по формуле:

1.
$$R = \frac{m}{a}$$
; 2. $R = m \cdot a$; 3. $R = J \cdot \varepsilon$; 4. $R = \frac{j}{\varepsilon}$.

49. Главный момент всех сил приложенных к звену определяется по формуле:

1.
$$M_R = J \cdot \varepsilon$$
; 2. $M_R = \frac{J}{\varepsilon}$; 3. $M_R = m \cdot a$; 4. $M_R = \frac{m}{a}$.

50. При поступательном движении звена, действующие на него силы приводятся ...:

- 1. к главному моменту;
- 2. к главному вектору (равнодействующей силе);
- 3. к главному вектору и главному моменту.

51. При вращении звена относительно оси, проходящей через его центр масс, действующие на звено силы и моменты приводятся ...:

- 1. к главному вектору (равнодействующей силе);
- 2. к главному моменту;
- 3. к главному вектору и главному моменту.

52. Метод рычага Жуковского включает в себя построение повёрнутого на 90 градусов:

- 1. плана скоростей;
- 2. плана ускорений;
- 3. изображения механизма.

53. Метод рычага Жуковского применяется для проверки правильности проведения:

- 1. структурного анализа механизма;
- 2. кинематического анализа механизма;
- 3. силового анализа механизма:
- 4. динамического баланса механизма.

54. Механизм Бенетта является пространственным четырёхзвенным механизмом с:

- 1. поступательными парами;
- 2. вращательными парами;
- 3. цилиндрическими парами;
- 4. шаровыми парами.

55. Пятизвенный пространственный механизм с вращательными парами образуется путём объединения:

- разуется путем объединения:
 1. двух механизмов Бенетта:
- 2. трёх механизмов Бенетта;
- 3. четырёх механизмов Бенетта.

56. Ротор называется уравновешенным, если ось его вращения:

- 1. параллельна одной из главных центральных осей инерции;
- 2. перпендикулярна одной из главных центральных осей инерции;
- 3. совпадает с одной из главных центральных осей инерции.

57. Для уравновешивания ротора необходимо и достаточно:

- 2 противовеса;
- 1 противовес;
- 3. 3 противовеса.

58. Наиболее благоприятным режимом работы подшипника считается, если:

- 1. динамические давления больше статических $(Q^{\mathbb{Z}} > Q^{\mathbb{C}})$;
- 2. динамические давления равны статическим $(Q^{\tilde{A}} = Q^{\tilde{C}})$;
- 3. динамические давления меньше статических ($Q^{\text{Д}} < Q^{\text{C}}$).

59. Динамическое давление ротора на подшипники определяется по формуле:

$$1.Q^{\delta} = m \cdot \omega \cdot \rho_{S}; \quad 2.Q^{\delta} = \frac{m \cdot \omega^{2}}{\rho_{S}}; \quad 3.Q^{\delta} = m \cdot \omega \cdot \rho^{2}_{S}; \quad 4.Q^{\delta} = m \cdot \omega^{2} \cdot \rho_{S}.$$

60. Дисбаланс ротора определяется по формуле:

1.
$$D = G \cdot \rho$$
; 2. $D = m \cdot \rho$; 3. $D = m^2 \cdot \rho$; 4. $D = \frac{G}{\rho}$.

61 Механизм называется уравновешенным, если давление его подвижным звеньев на станину:

1. постоянно; 2. переменно; 3. равно нулю; 4. больше нуля.

62. Чему будет равно динамическое давление, если: масса ротора m=10 кг, его угловая скорость ω =10 рад/с, расстояние от центра масс до оси вращения ρ =0,02 м?

63. С увеличением угловой скорости ротора его динамическое давление на полиципники:

1. уменьшается; 2. увеличивается; 3. останется без изменения.

64. Угловая скорость ротора увеличилась в 2 раза. Во сколько раз увеличится его динамическое давление?

65. С увеличением массы ротора его динамическое давление на подшипники:

1. увеличивается; 2. уменьшается; 3. остаётся без изменения.

66. Давление ротора на подшипники равно Q=100 H, масса ротора m=1 кг, расстояние от центра масс до оси вращения ρ =0,01 м. Чему равна угловая скорость ротора?

67 Изображённый на схеме кулачковый механизм является механизмом:

- 1. с роликовым толкателем:
- 2. с тарельчатым толкателем;
- 3. с игольчатым толкателем.

68. Показанный на рисунке кулачковый механизм служит для преобразования лвижения:

- 1. вращательного в возвратно-поступательное;
- 2. возвратно-поступательного в возвратно-поступательное;
- 3. вращательного в возвратно-вращательное;
- 4. возвратно-вращательного в возвратно-вращательное.

69. Изображенный на рисунке механизм является механизмом:

- 1. с тарельчатым толкателем;
- 2. с роликовым толкателем;
- 3. с игольчатым толкателем.

70. Какое из звеньев в данном механизме называется толкателем?

- 1. Звено 1:
- 2. Звено 2:
- 3. Звено 3;
- 4. Звено 4.

71. Какое из звеньев в данном механизме называется кулачок?

- 1. Звено 4;
- 2. Звено 2;
- 3. Звено 1;
- 4. Звено 3.

72. С увеличением значения угла δ значение сил Q_C и Q_D:

- 1. уменьшается;
- 2. увеличивается;
- 3. остаётся без изменений.

73. Цилиндрические зубчатые колёса применяются в тех случаях, когда оси валов:

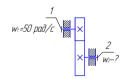
- 1. пересекаются;
- 2. параллельны;
- 3. не параллельны и не пересекаются.

74. Диаметр начальной окружности цилиндрического колеса определяется по формуле (m – модуль зацепления, z – число зубъев):

1.
$$d = \frac{m}{z}$$
; 2. $d = \frac{z}{m}$; 3. $d = m \cdot z$.

75. Передаточное число $U_{1/2}$ цилиндрической зубчатой передачи определяется по формуле (ω_1 и ω_2 – угловые скорости колёс):

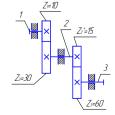
1.
$$U_{1/2} = \frac{\omega_2}{\omega_1}$$
; 2. $U_{1/2} = \omega_1 \cdot \omega_2$; 3. $U_{1/2} = \frac{\omega_1}{\omega_2}$; 4. $U_{1/2} = \omega_1 + \omega_2$;


76. Передаточное число $U_{1/2}$ цилиндрической зубчатой передачи определяется по формуле (z_1 и z_2 – числа зубьев колёс):

1.
$$U_{1/2} = \frac{z_2}{z_1}$$
; 2. $U_{1/2} = \frac{z_1}{z_2}$; 3. $U_{1/2} = z_1 + z_2$; 4. $U_{1/2} = z_1 \cdot z_2$.

77. Чему равно передаточное число данной передачи:

78. Чему равна угловая скорость ω_2 , если передаточное число данной передачи $U_{1/2} \! = \! 5$?



79. Чему равна угловая скорость ω2?

80. Передаточное число данной передачи равно:

- 1. 10;
- 2. 12:
- 3. 15;
- 4. 13,6.

- 81. Передаточное число многоступенчатого редуктора определяется по формуле:
 - 1. $U_{1/n} = U_I + U_{II} + ... + U_n$;
 - 2. $U_{1/n} = U_I : U_{II} : ... : U_n;$
 - 3. $U_{1/n} = U_I \cdot U_{II} \cdot \ldots \cdot U_n$.
- 82. Чему равно передаточное число редуктора, если передаточные отношения его ступеней равны: $U_I = 4$; $U_{II} = 2$; $U_{III} = 1.5$.
- 83. Чему равен диаметр начальной окружности цилиндрического зубчатого колеса, если его модуль равен3, а число зубьев равно 5
- 84. С увеличением модуля диаметр цилиндрического зубчатого колеса:
 - 1. увеличивается;
 - 2. уменьшается;
 - 3. остаётся без изменения.
- 85. Шаг зубьев цилиндрического зубчатого колеса определяется по формуле:

1.
$$P = \pi \cdot z$$
; $2.P = \frac{z}{\pi}$; $3.P = \frac{\pi}{z}$; $4.P = \pi \cdot m$.

- 86. Теорема о профилях читается так: нормаль, проведённая к профилям зубьев в точке их касания, делит межцентровое расстояние на отрезки,
 - 1. прямо пропорциональные угловым скоростям колёс;
 - 2. прямо пропорциональные числам зубьев колёс;
 - 3. обратно пропорциональные числам зубьев колёс;
 - 4. обратно пропорциональные угловым скоростям колёс.
- 87. Теорема о профилях записывается так:

1.
$$\frac{\omega_1}{\omega_2} = \frac{O_1 P}{O_2 P}$$
; 2. $\frac{\omega_1}{\omega_2} = (O_1 P) \cdot (O_2 P)$; 3. $\frac{\omega_1}{\omega_2} = \frac{O_2 P}{O_1 P}$; 4. $\frac{\omega_2}{\omega_1} = \frac{O_2 P}{O_1 P}$.

- 88. Скорость скольжения зубьев цилиндрической передачи определяется по формуле:
- 1. $V_{CK} = PK\frac{w_1}{w_2}$; 2. $V_{CK} = PK(w_1 \cdot w_2)$; 3. $V_{CK} = PK(w_1 w_2)$; 4. $V_{CK} = PK(w_1 + w_2)$.
- 89. Коэффициент перекрытия цилиндрических зубчатых колёс определяется по формуле:

1.
$$\varepsilon = \frac{P}{AB \cdot \cos \alpha}$$
; 2. $\varepsilon = \frac{AB \cdot \cos \alpha}{P}$; 3. $\varepsilon = \frac{AB}{P \cdot \cos \alpha}$; 4. $\varepsilon = AB + P \cdot \cos \alpha$

- 90. С увеличением длины зацепления коэффициент перекрытия цилиндрической зубчатой передачи:
 - 1. остаётся без изменения; 2. уменьшается; 3. увеличивается.
- 91 С увеличением шага зубьев коэффициент перекрытия цилиндрической зубчатой передачи:
 - 1. увеличивается;
 - 2. уменьшается;
 - 3. остаётся без изменения.
- 92. Какое из цилиндрических зубчатых колёс имеет более высокий коэффициент перекрытия:
 - 1. прямозубое;
 - 2. косозубое;
 - 3. коэффициенты перекрытия одинаковы.
- 93. Основным недостатком косозубых цилиндрических зубчатых колёс является:
 - 1. низкий КПД; 2. сложность изготовления; 3. малая нагрузочная способность;
 - 4. наличие осевого усилия.

94. Шевронные зубчатые колёса применяются для:

- 1. устранения осевого усилия;
- 2. повышения КПД передачи;
- 3. увеличения нагрузочной способности передачи;
- 4. снижения уровня шума при работе передачи.

95. Конические зубчатые передачи применяются в тех случаях, когда оси валов:

- параллельны;
- 2. пересекаются;
- 3. скрещиваются (не параллельны и не пересекаются).

96. Винтовые передачи применяются в тех случаях, когда оси валов:

- параллельны;
- 2. пересекаются;
- 3. скрещиваются (не параллельны и не пересекаются).

97. Червячные передачи применяются в тех случаях, когда оси валов:

- 1. параллельны;
- 2. перпендикулярны;
- 3. скрещиваются (не параллельны и не пересекаются).

98. Более высокую нагрузочную способность имеет червячная передача:

- 1. с цилиндрическим червяком;
- 2. с глобоидным червяком;
- 3. нагрузочная способность не зависит от типа червяка.

99. Передаточное число червячной передачи $U_{1/2}$ определяется по формуле:

1.
$$U_{1/2} = \frac{d_2}{d_1} \sin \varphi$$
, 2. $U_{1/2} = \frac{d_2}{d_1} \cos \varphi$, 3. $U_{1/2} = \frac{d_2}{d_1} t g \varphi$, 4. $U_{1/2} = \frac{d_2}{d_1} c t g \varphi$.

100. КПД многоступенчатого редуктора определяется по формуле:

- 1. $\eta_{1/n} = \eta_I + \eta_{II} + ... + \eta_n$;
- 2. $\eta_{1/n} = \eta_I \cdot \eta_{II} \cdot \ldots \cdot \eta_n$;
- 3. $\eta_{1/n} = \eta_I : \eta_{II} : ... : \eta_n$.

101. С увеличением количества ступеней КПЛ редуктора:

- 1. увеличивается;
- 2. уменьшается;
- 3. остаётся без изменений.

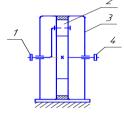
102. Формула для определения ускорения ползуна в кривошипно-ползунном механизме имеет вид:

- 1. $a_R = \omega_1 \cdot r \cdot (\cos \alpha + \lambda \cos 2\alpha)$;
- 2. $a_R = \omega_1^2 \cdot r \cdot (\cos \alpha \lambda \cos 2\alpha)$;
- 3. $a_B = \omega_1^2 \cdot r \cdot (\cos \alpha + \lambda \cos 2\alpha)$
- 4. $a_n = \omega_1 \cdot r \cdot (\cos \alpha \lambda \cos 2\alpha)$

103. На каком из звеньев в кривошипно-ползунном механизме устанавливается маховик?

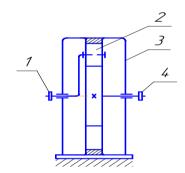
- 1. шатуне;
- 2. кривошипе;
- ползуне;
- 4. станине.

104. Маховик служит для:


- 1. поддержания колебаний угловой скорости кривошипа в заданных пределах;
- 2. увеличения мощности машины;
- 3. увеличения коэффициента полезного действия машины;
- 4. увеличения срока службы машины.

105. Коэффициент неравномерности угловой скорости кривошипа (δ) определяется по формуле:

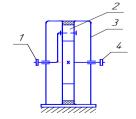
$$1.\delta = \frac{\omega_{\text{max}} + \omega_{\text{min}}}{\omega_{cp}}; \ 2.\delta = \frac{\omega_{\text{max}} - \omega_{\text{min}}}{\omega_{cp}}; \ 3. \delta = (\omega_{\text{max}} - \omega_{\text{min}}) \cdot \omega_{cp}; \ 4.\delta = (\omega_{\text{max}} + \omega_{\text{min}}) \cdot \omega_{cp}.$$


106. Какое из звеньев в данном редукторе называется сателлитом?

- 1. Звено 1;
- 2. Звено 2;
- 3. Звено 3;
- 4. Звено 4.

107. Какое из звеньев в данном редукторе называется водило?

- 1. Звено 1;
- 2. Звено 2;
- 3. Звено 3;
- 4. Звено 4.



105. Коэффициент неравномерности угловой скорости кривошипа (δ) определяется по формуле:

$$1.\delta = \frac{\omega_{\text{max}} + \omega_{\text{min}}}{\omega_{cp}}; \ 2.\delta = \frac{\omega_{\text{max}} - \omega_{\text{min}}}{\omega_{cp}}; \ 3.\delta = (\omega_{\text{max}} - \omega_{\text{min}}) \cdot \omega_{cp}; \ 4.\delta = (\omega_{\text{max}} + \omega_{\text{min}}) \cdot \omega_{cp}.$$

106. Какое из звеньев в данном редукторе называется сателлитом?

- 5. Звено 1;
- 3вено 2;
- Звено 3;
- 8. Звено 4.

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ

Экзаменационный билет № 1

- Классификация кинематических пар по числу степеней свободы или числу связей. Число степеней свободы механизмов.
- 2. Приведение сил (моментов) в механизме. Теорема Жуковского о жестком рычаге
- 3. Залача

Экзаменационный билет № 2

- 1. Классификация механизмов по Ассуру или Артоболевскому.
- Кинетическая энергия механизма. Приведение масс (моментов инерции) в механизме.
- 3. Задача

Экзаменационный билет № 3

- Кинематическое исследование плоских шарнирно-рычажных механизмов графическим способом (метод планов).
- 2. Определение закона движения ведущего звена механизма при установившемся режиме работы.
- 3. Залача

Экзаменационный билет № 4

- Кинематическое исследование плоских шарнирно-рычажных механизмов аналитическим способом.
- 2. Расчет маховика по методу Мерцалова.
- 3. Залача

Экзаменационный билет № 5

- Кинематическое исследование плоских кулачковых механизмов с роликовым поступательно-движущимся толкателем методом заменяющихся механизмов.
- 2. Статическое уравновешивание вращающихся масс.
- Залача.

Экзаменационный билет № 6

- 1. Синтез кулачкового механизма по углу давления.
- Статическое и динамическое уравновешивание ротора с известным положением неуравновешенных масс.
- 3. Залача.

Экзаменационный билет № 7

- 1. Синтез кулачкового механизма по условию выпуклости профиля.
- 2. Динамическая балансировка вращающихся масс.
- 3. Задача.

Экзаменационный билет № 8

- 1. Основная теорема зацепления.
- 2. Уравновешивание механизмов. Вектор центра тяжести механизма.
- 3. Залача.

Экзаменационный билет № 9

- 1. Эвольвента окружности, ее уравнение и свойства. Элементы и параметры эвольвентного зубчатого колеса.
- 2. Частичное уравновешивание механизма.
- 3. Задача.

Экзаменационный билет № 10

- 1. Эвольвентное зацепление и его свойства.
- 2. Полное уравновешивание механизма.
- 3. Задача.

КУРСОВАЯ РАБОТА

В зависимости от уровня подготовки студент выполняет курсовой или курсовую работу.

Курсовой проект по теории механизмов и машин по объему включает 3-4 листа чертежей формата A1 и расчетно-пояснительную записку (с приложением результатов расчетов на ЭВМ).

Задание на курсовой проект является комплексным, предусматривающим проектирование и исследование основных видов механизмов, объединенных в систему какой-либо машины, агрегата, промышленного робота, прибора или устройства.

В качестве примеров можно указать следующие темы проектов:

- 1. Проектирование и исследование механизмов шагового транспортера автоматической передачи заготовок.
- 2. Проектирование и исследование механизмов криогенного поршневого детандера.
 - 3. Проектирование и исследование механизмов ДВС.
- Проектирование и исследование механизмов подъема и поворота схвата манипулятора.
 - 5. Проектирование и исследование механизмов рулевого гидропривода.
- 7. Проектирование и исследование механизмов поворота платформы транспортной машины.
- 8. Проектирование и исследование механизмов поворота, устройств для закрывания, открывания и фиксации поворотных столов, рулевых машин, шасси и т.д.
- 10. Проектирование и исследование механизмов привода антенны радиолокатора.
- 11. Проектирование и исследование механизмов манипулятора для гибких производственных систем (ГПС).

Примерный перечень вопросов, разрабатываемых при курсовом проектировании:

- а) Проектирование кинематической схемы с определением основных размеров, включая механизмы: рычажный, зубчатый, кулачковый.
- б) Определение быстродействия механизма в переходном режиме при заданных нагрузках на ведущем и исполнительном звеньях.
- в) Определение сил в кинематических парах при учете ускоренного движения звеньев.
 - г) Расчет износа элементов кинематических пар.
- д) Проектирование планетарного зубчатого механизма при заданной передаточной функции с учетом условий соосности, смежности, технологичности и сборки с минимальными габаритами.
- е) Проектирование кулачкового механизма, обеспечивающего заданный закон движения выходного звена с учетом условий действия сил.
 - ж) Согласование движения механизмов с помощью циклограмм и тактограмм.
- Статическое уравновешивание рычажных механизмов (с помощью противовесов или корректирующих масс на зубчатых колесах).
 - и) Виброизоляция и динамическое гашение колебаний.
 - к) Выбор параметров упругой муфты из условий виброзащиты двигателя.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕННИЙ

Лекции оцениваются по посещаемости, активности, умению выделить главную мысль.

Лабораторные занятия оцениваются по самостоятельности выполнения работы, грамотности в оформлении, правильности выполнения.

Самостоятельная работа оценивается по качеству и количеству выполненных домашних работ, грамотности в оформлении, правильности выполнения.

Промежуточная аттестация проводится в форме экзамена.

Критерии оценки экзамена в тестовой форме: количество баллов или удовлетворительно, хорошо, отлично. Для получения соответствующей оценки на экзамене по курсу используется накопительная система балльно-рейтинговой работы студентов. Итоговая оценка складывается из суммы баллов или оценок, полученных по всем разделам курса и суммы баллов полученной на экзамене.

Критерии оценки уровня знаний студентов с использованием теста на экзамене по учебной дисциплине

Оценка	Характеристики ответа студента		
Отлично	86-100 % правильных ответов		
Хорошо	71-85 %		
Удовлетворительно	51- 70%		
Неудовлетворительно	Менее 51 %		

Количество баллов и оценка неудовлетворительно, удовлетворительно, хорошо, отлично определяются программными средствами по количеству правильных ответов к количеству случайно выбранных вопросов.

Критерии оценивания компетенций следующие:

- Ответы имеют полные решения (с правильным ответом). Их содержание свидетельствует об уверенных знаниях обучающегося и о его умении решать профессиональные задачи, оценивается в 5 баллов (отлично);
- Более 75 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует о достаточных знаниях обучающегося и его умении решать профессиональные задачи – 4 балла (хорошо);
- 3. Не менее 50 % ответов имеют полные решения (с правильным ответом) Их содержание свидетельствует об удовлетворительных знаниях обучающегося и о его ограниченном умении решать профессиональные задачи, соответствующие его будущей квалификации 3 балла (удовлетворительно);
- 4. Менее 50 % ответов имеют решения с правильным ответом. Их содержание свидетельствует о слабых знаниях обучающегося и его неумении решать профессиональные задачи 2 балла (неудовлетворительно).