

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Казанский государственный аграрный университет» (ФГБОУ ВО Казанский ГАУ)

Институт механизации и технического сервиса

Кафедра маний и оборудования в агробизнесе

УТВЕРЖДАЮ
Первый проректор —
проректор по учебновоспитательной работе, проф.
Б.Г. Зиганшин
апреда 2019 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

«ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА»

(приложение к рабочей программе дисциплины)

по направлению подготовки 20.03.01 Техносферная безопасность

Направленность (профиль) подготовки Безопасность технологических процессов и производств

Уровень **бакалавриата**

Форма обучения очная, заочная

Казань - 2019

Составитель: Лукманов Руслан Рушанович, к.т.н., доцент

Фонд оценочных средств обсуждён и одобрен на заседании кафедры машин и оборудования в агробизнесе 24 апреля 2019 года (протокол № 10)

Зав. кафедрой, д.т.н., профессор

11

Зиганшин Б. І

Рассмотрен и одобрен на заседании методической комиссии Института механизации и технического сервиса 24 апреля 2019 г. (протокол № 9)

Пред. метод. комиссии, к.т.н., доцент

Лукманов Р.Р.

Согласовано: Директор Института механизации и технического сервиса,

д.т.н., профессор

Яхин С.М.

Протокол ученого совета Института

механизации и технического сервиса № 8 от «25» апреля 2019 г.

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения ОПОП бакалавриата по направлению обучения 20.03.01 Техносферная безопасность, обучающийся должен овладеть следующими результатами обучения по дисциплине «Электроника и электротехника»:

Таблица 1.1 – Требования к результатам освоения дисциплины

Код	Результаты освоения ОПОП.	Перечень планируемых результатов
компетенции	Содержание компетенций	обучения по дисциплине
	(в соответствии с ФГОС ВО)	
OK-10	способностью к познавательной	Знать: основные понятия,
	деятельности	представления, законы электротехники и
		электроники и границы их
		применимости; области применения и
		потенциальные возможности основных
		электротехнических устройств (машин и
		аппаратов), электронных приборов и
		узлов, электроизмерительных приборов
		Уметь: читать электрические схемы
		электротехнических и электронных
		устройств; грамотно выбирать и
		применять в своей работе электронные
		приборы и узлы, электротехнические
		устройства и аппараты
		Владеть: методами теоретического и
		экспериментального исследования в
		электротехнике и электронике

3

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Таблица 2.1 – Показатели и критерии определения уровня сформированности компетенций

Компетенция,	Планируемые	Критерии оценивания результатов обучения			
этапы освоения компетенции	результаты обучения	2	3	4	5
ОК-10 способностью к познавательной деятельности Первый этап	Знать: основные понятия, представления, законы электрогехники и электроники и границы их применимости; области применения и потенциальные возможности основных электротехнических устройств (машин и	Отсутствуют представления об основных понятиях, представлениях, законах электротехники и электроники и границы их применимости; области приме-	Неполные представления об основных понятиях, представлениях, законах электротехники и электроники и границы их применимости; области приме-	Сформированные, но содержащие отдельные пробелы представления об основных понятиях, представлениях, законах электротехники и электроники и границы их применимости;	Сформированные представления об основных понятиях, представлениях, законах электротехники и границы их применимости; области приме-
	аппаратов), электронных приборов и узлов, элек- троизмерительных приборов	нения и потенциальные возможности основных электротехнически х устройств (машин и аппаратов), электронных приборов и узлов, электроизмерительных приборов	нения и потенциальные возможности основных электротехническ их устройств (машин и аппаратов), электронных приборов и узлов, электроизмерительных приборов	области применения и потенциальные возможности основных электротехнических устройств (машин и аппаратов), электронных приборов и узлов, электроизмерительных приборов	нения и потенциальные возможности основных электротехническ их устройств (машин и аппаратов), электронных приборов и узлов, электроизмерительных приборов в троизмерительных приборов и узлов, электроизмерительных приборов
	Уметь: читать	Не умеет читать	В целом успешно,	В целом успешное, но	Сформированное
	электрические схемы	электрические	но не	содержащее	умение читать

2

электротехнических и	схемы	систематически	отдельные пробелы в	электрические
электронных	электротехнически	читает	умении читать	схемы
устройств; грамотно	х и электронных	электрические	электрические схемы	электротехническ
выбирать и применять в	устройств;	схемы	электротехнических и	их и электронных
своей работе	грамотно выбирать	электротехническ	электронных	устройств;
электронные приборы и	и применять в	их и электронных	устройств; грамотно	грамотно
узлы,	своей работе	устройств;	выбирать и применять	выбирать и
электротехнические	электронные	грамотно	в своей работе	применять в
устройства и аппараты	приборы и узлы,	выбирает и	электронные приборы	своей работе
	электротехнически	применяет в своей	и узлы,	электронные
	е устройства и	работе	электротехнические	приборы и узлы,
	аппараты	электронные	устройства и	электротехническ
		приборы и узлы,	аппараты	ие устройства и
		электротехническ		аппараты
		ие устройства и		
		аппараты		
Владеть: методами	Не владеет	В целом	В целом успешное, но	Успешное
теоретического и	методами	успешное, но не	содержащее	применение
экспериментального	теоретического и	систематическое	отдельные пробелы	методов
исследования в	экспериментальног	применение	применения методов	теоретического и
электротехнике и	о исследования в	методов	теоретического и	экспериментальн
электронике	электротехнике и	теоретического и	экспериментального	ого исследования
	электронике	экспериментально	исследования в	в электротехнике
		го исследования в	электротехнике и	и электронике
		электротехнике и	электронике	
		электронике		

Описание шкалы оценивания

1. Оценка «неудовлетворительно» ставится студенту, не овладевшему ни одним из элементов компетенции, т.е. обнаружившему существенные пробелы в знании основного программного материала по дисциплине, допустившему принципиальные ошибки при

применении теоретических знаний, которые не позволяют ему продолжить обучение или приступить к практической деятельности без дополнительной подготовки по данной дисциплине.

- 2. Оценка «удовлетворительно» ставится студенту, овладевшему элементами компетенции «знать», т.е. проявившему знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности, знакомому с основной рекомендованной литературой, допустившему неточности в ответе на экзамене, но в основном обладающему необходимыми знаниями для их устранения при корректировке со стороны экзаменатора.
- 3. Оценка «хорошо» ставится студенту, овладевшему элементами компетенции «знать» и «уметь», проявившему полное знание программного материала по дисциплине, освоившему основную рекомендованную литературу, обнаружившему стабильный характер знаний и умений и способному к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности.
- 4. Оценка «отлично» ставится студенту, овладевшему элементами компетенции «знать», «уметь» и «владеть», проявившему всесторонние и глубокие знания программного материала по дисциплине, освоившему основную и дополнительную литературу, обнаружившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний.
 - 5. Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».
 - 6. Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАЛАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ. НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Вопросы к экзамену в тестовой форме

1. Какие токи создают вращение алюминиевого диска электросчетчика?

- 1. токи самоиндукции
- 2. токи взаимоиндукции
- 3. токи смешения
- 4. вихревые токи.

2. Сколько катушек в однофазном электросчетчике активной энергии?

- 1. одна, измеряет энергию
- 2. две, одна токовая, другая напряжения
- 3. три, токовая, напряжения, и счетного механизма
- 4. четыре: токовая, напряжения, счетного механизма и тормозного магнита.

3. Для чего нужен тормозной магнит электросчетчика?

- 1. для затормаживания при неисправностях
- 2. для торможения при перегрузках
- 3. для торможения при отключения тока
- 4. для уменьшения скорости вращения диска и уменьшения размеров счетного механизма.

4. На каком токе может работать прибор электромагнитной системы?

- 1. на постоянном
- 2. на переменном
- 3. на постоянном и переменном
- 4. на импульсном.

5. Количество катушек у прибора электродинамической системы:

- 1. одна
- 2. две
- 3. три
- 4. четыре.

6. Условные обозначения в приборах:

- б- горизонтальная установка
- 1. а заводской знак в – без инерционный
- г на 1.5 В
- 2. а знак испытания изоляции
- б горизонтальная установка
- в группа по условиям эксплуатации
- г класс точности.
- 3. а знак испытания изоляции
- б горизонтальная установка
- в быстродействующий
- г на 1,5 кВ.

7. Частота переменного тока:

- 1. это число периодов за одну минуту
- 2. это количество переходов синусоиды через нулевое значение

- 3. это число периодов за одну секунду
- 4. это число периодов за один час

8. Действующее значение переменного синусоидального тока:

1.
$$I_g = \sqrt{3} \cdot I_{\text{max}}$$

2.
$$I_g = \sqrt{2} \cdot I_{\text{max}}$$

$$3. I_g = \frac{I_{\text{max}}}{\sqrt{3}}$$

$$4. I_g = \frac{I_{\text{max}}}{\sqrt{2}}$$

9. Каково соотношение между геометрическими и электрическими градусами:

- 1. они всегла олинаковы
- 2. электрические = геометрическим · р, где р число пар полюсов
- 3. нет правильного ответа.
- 4. электрические = геометрическим / р, где р число пар полюсов

10. В каком случае электрические градусы равны геометрическим (360° в замкнутой окружности):

- 1. во всех случаях
- 2. в однофазных системах
- 3. в трехфазных системах
- 4. при одной паре полюсов синусоидального тока

11. Как создаются магнитные полюса в асинхронных машинах 3-х фазного тока:

- 1. они являются конструктивными элементами устройства машины
- 2. определенным распределением токов в 3-х фазной обмотке статора
- 3. нет правильного ответа
- 4. за счет постоянных магнитов

12. Какие виды сопротивлений существуют в цепях переменного тока:

- 1. активное, высокочастотное, импульсное
- 2. индуктивное, низкочастотное, емкостное
- 3. активное, индуктивное, катушечное
- 4. активное, индуктивное, емкостное

13. Почему в качестве переменного тока принят синусоидально изменяющийся ток, ведь существуют и другие функции изменения:

- 1. произвольно, все переменные годятся
- 2. производная синуса косинус (математика), они имеют подобные изменения, что позволяет создавать рациональные виды электромагнитных устройств
- 3. это сложилось исторически
- 4. нет правильного ответа

14. Формула абсолютной магнитной проницаемости:

1.
$$\mu_a = \frac{\mu_0}{\mu}$$

$$2. \quad \mu_a = \frac{\mu}{\mu_0}$$

3.
$$\mu_a = \mu_0 \cdot \mu$$

4.
$$\mu_a = \sqrt{\mu_0 \cdot \mu}$$

15. Магнитная индукция определяется:

1.
$$B = \frac{H}{L}$$

$$2. \quad B = \frac{\mu}{H}$$

3.
$$B = \mu \cdot H$$

16. Магнитный поток определяется:

1.
$$\Phi = H \cdot \ell$$

2.
$$\Phi = H \cdot S$$

3.
$$\Phi = B \cdot H$$

4.
$$\Phi = B \cdot S$$

17. Закон Полного тока для магнитной цепи:

1.
$$\sum H \cdot \mu = \sum I \cdot S$$

2.
$$\overline{H} \cdot \Phi = B \cdot \overline{\mu}$$

3.
$$\sum H \cdot \ell = \sum I \cdot W$$

4.
$$H \cdot \mu = B \cdot \Phi$$

18. Можно ли в качестве магнитопровода в аппаратах использовать цветной металл:

- 1. да, он будет иметь хорошую электропроводность
- 2. да, уменьшатся потери мощности
- 3. нет, у них очень плохая магнитная проницаемость (проводимость) μ \approx 1 а требуется μ = 10^3 и более
- 4. можно, если заранее сильно намагнитить

19. Как определяется направление магнитного потока катушки с током:

- 1. по правилам буравчика
- 2. по часовой стрелке
- 3. против часовой стрелки
- 4. по правилу правой руки
- 4. от направления магнитных потоков катушек

20. Влияет ли стальной сердечник на индуктивность и величину магнитного потока катушки на переменном токе:

- 1. не влияет
- 2. слабо влияет
- 3. увеличивает во много раз

21. Влияет ли стальной сердечник на сопротивление катушки постоянному току:

- 1. да, влияет
- 2. увеличивает многократно
- 3. не влияет

22. Влияет ли стальной сердечник на сопротивление катушки переменному току

- 1. увеличивает во много раз
- 2. нет, не влияет

23. Какое сопротивление в проводнике, катушке создается за счет магнитного поля на переменном токе:

- активное
- 2. индуктивное
- 3. емкостное

24. Что произойдет, если перепутать 1^{10} и 2^{10} клемму счетчика, к которым присоединена токовая катушка:

- 1. никаких изменений не будет, ведь переменный ток и так меняет направление
- 2. короткое замыкание
- 3. диск счетчика будет вращаться в обратном направление
- 4. диск остановится, счетчик работать не будет.

25. Для чего нужен тормозной магнит счетчика:

1. для остановки диска при отсутствие нагрузки

2. для притормаживании диска при больших бросках токов

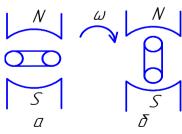
3. для уменьшения частоты вращения диска, иначе счетный механизм будет очень большой и громоздкий.

26. Первый закон Кирхгофа:

- 1. $\sum E = 0$
- 2. $\sum I \cdot R = 0$
- 3. $\sum U = 0$
- 4. $\sum I = 0$

27. Связь между напряженностью магнитного поля и магнитной индукцией:

- 1. $B = \mu \cdot H$
- 2. $B = \frac{H}{u}$
- 3. $B = \frac{\mu}{E}$
- 4. $B = \mu + H$


28. Абсолютная магнитная проницаемость:

- 1. $\mu_a = \frac{\mu_0}{\mu}$
- 2. $\mu_a = \frac{\mu}{\mu_0}$
- 3. $\mu_a = \mu_0 \cdot \mu$
- 4. $\mu_a = \sqrt{\mu_0 \cdot \mu}$

29. Магнитный поток:

- 1. $\Phi = \frac{B}{S}$
- 2. $\Phi = \frac{S}{R}$
- 3. $\Phi = B \cdot S$

30. В каком положение при вращении рамки эдс будет максимальной:

в положение а

3. нет такого положения в

2. в положение б указанных рисунках

31. Магнитные материалы:

1. парамагнитные $\mu \approx 1$ $\mu < 1$,

диамагнитные $\mu \approx 1$ $\mu > 1$ ферромагнитные $\mu = 10^3$ и более

- 2. парамагнитные $\mu \approx 1$ $\mu > 1$ диамагнитные $\mu \approx 1$ $\mu < 1$
- ферромагнитные $\mu = 10^3$ и более

32. Абсолютная погрешность измерительного прибора:

1.
$$\Delta A = A_g - A_{np}$$

2.
$$\Delta A = A_{np} - A_g$$

3.
$$\Delta A = \frac{A_{\partial}}{A_{np}}$$

где Апр – показания измеряющего прибора

А, – лействительное значение измеряемой величины (обычно по показаниям образцового прибора.

33. Относительная приведенная погрешность:

1.
$$\gamma_{np} = \frac{\Delta A}{A_{MAKC}} \cdot 100\%$$

2.
$$\gamma_{np} = \frac{A_{MAKC}}{\Delta A} \cdot 100\%$$

3.
$$\gamma_{np} = \Delta A - A_{mackc}$$

где ΔA - абсолютная погрешность

 $A_{\it Marc}$ – наибольшее значение измеряемой величина на шкале прибора

34. Цена деления (постоянная) многопредельного ваттметра:

1.
$$C = \frac{U_H \cdot \alpha_H}{I_H}$$
; 2. $C = \frac{U_H + I_H}{\alpha_H}$; 3. $C = \frac{U_H \cdot I_H}{\alpha_H}$

$$2. C = \frac{U_H + I_H}{\alpha_{..}}$$

3.
$$C = \frac{U_H \cdot I_H}{\alpha_H}$$

где U_{H} I_{H} – номинальные значения напряжения и тока установленные на переключателях прибора

 \mathcal{C}_{H} – номинальное значение деления (верхний предел на шкале прибора).

35. Условные обозначения приборов:

1. а – частотомер, б – фазометр, в – омметр, г - киловольтметр

2. а – омметр, б – фазометр, в – частотомер, г - киловольтметр

3. $a - \phi asomethor, 6 - ommethor, 8 - частотомер, <math>\Gamma - \kappa u$ ловольтметр.

36. Полное (или кажущееся) сопротивления переменного тока:

1.
$$Z = R + X_L + X_C$$

2.
$$Z = R^2 + X^2 + X_C^2$$

$$3.Z = \sqrt{R^2 + (X + X)^2}$$

37. Направление тока в цепи при заданных параметрах

$$E_1 = 12 \text{ B}$$
 $E_2 = 12 \text{ B}$ $R = 5 \text{ Ом}$ E_2 Стрелке нулю.

1. по часовой стрелке

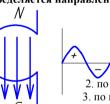
2. против часовой

3. сила тока равна

38. Емкостное сопротивление переменного тока

1.
$$X_c = \omega \cdot c = 2\pi \cdot f \cdot c$$
 2. $X_c = \frac{1}{\omega \cdot c} = \frac{1}{2\pi \cdot f \cdot c}$

3.
$$X_c = \frac{c}{\omega} = \frac{c}{2\pi \cdot f}$$
 4. $X_c = \sqrt{\omega \cdot c^2} = \sqrt{2\pi \cdot f \cdot c^2}$


39. Елиницы измерения мощностей переменного тока:

- 1. активная Р-кВт киловатт инлуктивная Ос-кВт киловатт емкостная От-кВт киловатт полная S-кВт киловатт
- 2. активная Р-кВА киловольтампер индуктивная О₁-кВАр киловольтампер реактивный емкостная Ос-кВАр киловольтампер реактивный полная S-кВА киловольтампер
- 3. активная Р-кВт киловатт индуктивная O_I-кВАр киловольтампер реактивный емкостная Q_C-кВар киловольтампер реактивный полная S-кВА киловольтампер

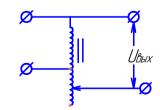
40. Формулы мошностей переменного синусоидального тока:

- 1. активная $P = UIsin\varphi$, индуктивная $Q_L = UIcos\varphi$, полная $S = UItg\varphi$
- 2. активная $P=UIcos \varphi$.индуктивная $O_L=UIsin \varphi$.полная S=UI
- 3. активная $P=UIcos\varphi$,индуктивная $O_L=UItg\varphi$,полная $S=UIsin\varphi$

41. Как определяется направление ЭДС индуктированной в проводнике?

1. по направлению вращения, часовой-плюс, против

часовой-минус


2. по правилу левой руки

3. по правилу буравчика 4. по правилу правой руки

42. Как определяется знак (плюс или минус) в уравнении по закону полного тока для магнитной цепи $\Sigma H : l=I_1 : W_1 \pm I_2 : W_2$:

- 1. по направлению намотки катушек
- 2. по расположению катушек на сердечнике
- 3. произвольно
- 4. по взаимному направлению магнитных потоков катушек с токами, определяемому правилом правой руки

43. На рисунке изображена схема

- 1. Трансформатора
- 2. резисто радля регулирования напряжения
- 3. дросселя
- 4. автотрансформатора

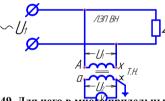
44. Коэффициент трансформации измерительного трансформатора тока

ПО

1.
$$Ktt = \frac{U1}{U2}$$
 2. $Ktt = \frac{I2}{I1}$ 3. $Ktt = \frac{I1}{I2}$ 4. $Ktt = \frac{I1h}{I2h}$

45. Коэффициент трансформации измерительного трансформатора напряжения

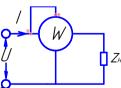
1.
$$Ktn = \frac{U2}{U1}$$
 2. $Ktn = \frac{I1}{I2}$ 3. $Ktn = \frac{U1}{U2}$ 4. $Ktn = \frac{U1h}{U2h}$


46. Для чего заземляются вторичные обмотки измерительных трансформаторов напряжения и тока?

- 1. Для нормальной работы трансформаторов
- 2. для погашения вредного влияния посторонних магнитных полей
- 3. для точности измерения
- для защиты персонала от поражения током при замыкании первичной обмотка высокого напряжения на вторичные цепи.

47. На рисунке изображена схема

- 1. передача эл. энергии потребителю z через понизительный трансформатор
- измерение мощности
 3. измерение силы тока с помощью
 - измерительного трансформатора тока ТТ
- **4.** усилителя тока.



- 1.измерения сопротивления Z потребителя
- 2.влияние напряжения в ЛЭП В.Н. с помощью
- трансформатора напряжения ТН
- 3.измерение мощности
- 4. усилителя напряжения

49. Для чего в мно придельных вольтметрах по одной клемме токовой и напряженческой катушек помечают знаками * или (звездочкой или точкой)

- 1. чтобы различать типы катушек
- 2. это генераторные клеммы, соединяются между собой и подключаются со стороны сети
- 3. чтобы токи в катушке были в определенном направлении
- 4. нет правильного ответа

50. На рисунке изображена схема

- 1. измерение сопротивления Zn
- 2. измерение силы тока
- 3. измерение частоты
- 4. измерение мощности

51. активная мощность переменного трех фазного тока определяется

1.
$$P = 3 \cdot U_{_{A}} \cdot I_{_{A}}$$
 2. $P = 3 \cdot U_{_{CP}} \cdot I_{_{CP}}$ 3. $P = \sqrt{3} \cdot U_{_{A}} \cdot I_{_{A}} \cdot \sin \varphi$ 4. $P = \sqrt{3} \cdot U_{_{A}} \cdot I_{_{A}} \cdot \cos \varphi$

52. реактивная мощность трехфазного тока определяется

1.
$$Q = 3 \cdot U_{_{a}} \cdot I_{_{a}}$$
 2. $Q = 3 \cdot U_{_{cp}} \cdot I_{_{cp}}$ 3. $Q = \sqrt{3} \cdot U_{_{a}} \cdot I_{_{a}} \cdot 4$. $Q = \sqrt{3} \cdot U_{_{a}} \cdot I_{_{a}} \cdot \sin \varphi$

53. полное сопротивление катушки на переменном токе

1.
$$Z = R + X_1$$
 2. $Z = R^2 + X_1^2$ 3. $Z = \sqrt{R^2 + X_1^2}$ 4. $Z = \sqrt{R^2 - X_1^2}$

54. Скорость движения электрического тока?

- 1. 50 км/сек
- **2.** $10^3 \, \text{km/cek}$
- 3. 3*10⁵км/сек
- **4.** электрический ток 7,5 раза «обегает» земной шар по экватору за 1 секунду (со скоростью света).

55. Правильная формула коэффициента мощности – Cos ф

- 1. $\cos \varphi = \frac{Q}{p}$
- $2.\cos\varphi = \frac{Q_1}{Q_2}$
- $3.\cos\varphi = \frac{P}{S}$
- 4. $\cos \varphi = \frac{I_a}{I}$

где Р - активная мощность

- Q реактивная мощность
- О1 -индуктивная мощность
- Q_с-емкостная мощность
- S-полная мощность
- I₂-активный ток
- І-полный ток

56. Как изменится сила тока, потребляемая из сети, если к индуктивной нагрузке – X_1 подключить параллельно емкость - X_c

- 1. не изменится
- 2. увеличится
- 3. уменьшится

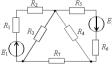
57. Каково различие между трансформатором и автотрансформатором

- 1. по регулированию напряжения у автотрансформатора оно автоматическое, у трансформатора нет,
- 2. по числу обмоток у автотрансформатора их две или более, у трансформатора одна
- 3. у автотрансформатора одна обмотка, у трансформатора две или более

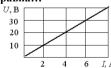
58. Почему сердечники-магнитоприводы электромагнитных машин и аппаратов изготовляются не сплошными литыми, а набираются в пакет из тонколистовых изолированных пластин

- 1. проще технология изготовления
- 2. для экономии магнитной стали
- 3. для уменьшения веса сердечника
- 4. для уменьшения вихревых токов и нагрева сердечника

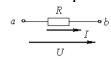
59. Параллельное подключение конденсатора к электродвигателю обеспечивает


- 1. стабильность напряжения сети
- 2. плавность работы двигателя
- **3.** уменьшает реактивный ток, потребляемый из сети, и повышает коэффициент мощности $\cos \varphi$
- 4. уменьшает уровень шума двигателя
- 3. гидравлических, нет потребности в топливе

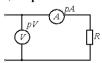
60. Трехфазный ток это


- 1. система из трех одинаковых по величине и времени токов
- **2.** система из трех переменных токов сдвинутых на 90^0 и соединенных по определенной схеме
- **3.** система из трех переменных синусоидальных токов, сдвинутых во времени и пространстве на 120^0 или одну треть периода, и соединенных по определенной схеме
- 61. Источник электрической энергии, напряжение, на выводах которого не зависит от электрического тока в нем, это ...
- 1) реальный источник напряжения
- 2) реальный источник тока
- 3) идеальный источник напряжения
- 4) идеальный источник тока
- 62. Величина, обратная сопротивлению участка цепи называется...
- 1) мошностью
- 2) проводимостью
- 3) силой тока
- 4) напряжением
- 63. Количество узлов в данной схеме составляет...

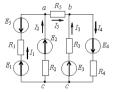
- 1) три
- 2) четыре
- 3) шесть
- 4) два
- 64. Количество узлов в данной схеме составляет...

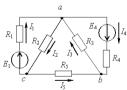


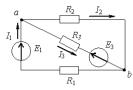
- 1) три
- 2) четыре
- 3) семь
- 4) пять
- 65. При заданной вольт-амперной характеристике приемника его проводимость равна...

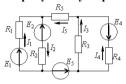


- 1) 0,2 Ом
- 2) 2 O_M
- 3) 0,5 O_M
- 4) 5 O_M

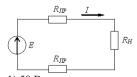

66. Если напряжение U = 200 В, а ток I = 5 А, то сопротивление R равно ...

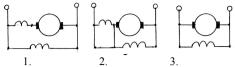

- 1) 1 кОм
- 2) 40 O_M
- 3) 0.025 O_M
- 4) 100 Om
- 67. Если к цепи приложено напряжение U=120 В, а сила тока I=2 А, то сопротивление цепи равно ...

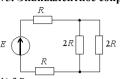

- 1) 120 Ом
- 2) 60 Om
- 3) 0,017 Ом
- 4) 240 O_M
- 68. Если токи в ветвях составляют $I_1 = 2A$, $I_2 = 10~A$, то ток I_5 будет равен...


- 1) 12 A
- 2) 6 A
- 3) 8 A
- 4) 20 A
- 69. Если токи в ветвях составляют $I_3 = 10A, I_4 = 3A$, то ток I_5 будет равен...

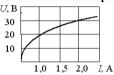
- 1)7A
- 2) 1 A
- 3) 5 A
- 4) 10 A
- 70. Количество независимых уравнений по второму закону Кирхгофа, необходимое для расчета токов в ветвях составит...


- 1) два
- 2) одно
- 3) три
- 4) четыре
- 71. Количество независимых уравнений, необходимое для расчета токов в ветвях по второму закону Кирхгофа составит...

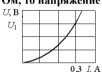

- 1) три
- 2) два
- 3) четыре
- 4) шесть
- 72. Если все резисторы имеют одинаковое сопротивление, то эквивалентное сопротивление цепи равно...


- 1) 219
- 2) $R_{\mathfrak{I}} = R$
- 4) $R_9 = 2R$
- 73. Если через нагрузку с сопротивлением $^{R_{H}}=$ 10 Ом проходит постоянный ток 5 A, а сопротивление одного провода линии $^{R_{\overline{MP}}}=$ 1 Ом, то падение напряжения в линии составит...

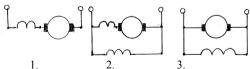
- 1) 50 B
- 2) 5 B
- 3) 10 B
- 4) 60 B
- 74. Схема шунтового генератора постоянного тока



75. Эквивалентное сопротивление цепи относительно источника ЭДС составит...



- 1) 3*R*
- 2) R
- 3) 6R
- 4) 4R


76. Статическое сопротивление нелинейного элемента при токе 2 А составит...

- 1) 32 Ом
- 2) 15 Ом
- 3) 60 O_M
- 4) 28 Om
- 77. Если статическое сопротивление нелинейного элемента при токе I_1 = 0,3 A равно 10 Ом, то напряжение U_1 составит...

- 1) 3 B
- 2) 33,33 B
- 3) 0.03 B
- 4) 10.3 B
- 78. Схема компаундного генератора постоянного тока

- 79. Угловая частота ω при частоте синусоидального тока f, равной 50 Γ ц, составит...
- 1) 0.01 c^{-1}
- 2) 314 c^{-1}
- 3) 628 c^{-1}
- 4) 100 c^{-1}

80. При описании магнитного поля используется величина...

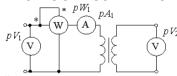
- 1) диэлектрической постоянной ε_0
- 2) электрического смещения D
- 3) магнитного потока Φ
- 4) напряженности электрического поля E

81. Величиной, имеющей размерность Вб, является...

- 1) магнитный поток Φ
- 2) магнитная индукция B
- 3) напряженность магнитного поля H
- 4) напряженность электрического поля E

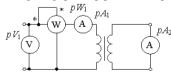
82. Величиной, имеющей размерность Гн/м, является...

- 1) абсолютная магнитная проницаемость μ_a .
- 2) магнитная индукция В
- 3) магнитный поток Φ
- 4) напряженность магнитного поля H


83. Сердечник трансформатора выполняется из электротехнической стали для ...

- 1) увеличения магнитной связи между обмотками трансформатора
- 2) увеличения емкостной связи между обмотками
- 3) увеличения потерь на гистерезисе
- 4) увеличения потерь на вихревые токи

84. Опыт холостого хода трансформатора проводится при...


- 1) разомкнутой вторичной обмотке и пониженном напряжении на первичной обмотке
- 2) номинальных токах и напряжениях
- 3) разомкнутой вторичной обмотке и номинальном напряжении на первичной обмотке
- 4) замкнутой на коротко вторичной обмотке и номинальных токах

85. Трансформатор работает в режиме...

- 1) согласованной нагрузки
- 2) холостого хода
- 3) короткого замыкания
- 4) номинальной нагрузки

86. Трансформатор работает в режиме...

- 1) короткого замыкания
- 2) номинальной нагрузки
- 3) согласованной нагрузки
- 4) холостого хода

87. Асинхронные двигатели с фазным ротором отличается от двигателя с короткозамкнутым ротором...

- 1) наличием контктных колец и щеток
- 2) числом катушек обмотки статора
- 3) использованием в качестве ротора постоянного магнита

4) наличием специальных пазов для охлаждения

88. На рисунке изображены роторы электрических двигателей...

- δ неявнополюсный ротор синхронного двигателя
- 2) а явнополюсный ротор синхронного двигателя
- δ короткозамкнутый ротор асинхронного двигателя
- 3) а явнополюсный ротор синхронного двигателя
- δ неявнополюсный ротор синхронного двигателя
- 4) а неявнополюсный ротор синхронного двигателя
- δ явнополюсный ротор синхронного двигателя

89. Частота вращения магнитного поля синхронной машины R_0 и частота вращения ротора n связаны соотношением...

- 1) $n_0 < n$
- 2) $n_0 = n$
- 3) $n_0 > n$
- 4) $n_0 n = n_5$

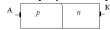
90. Частота ЭДС, создаваемой на статоре синхронной машины, определяется соотношением...

$$f = \frac{60}{n}$$

$$f = \frac{60}{100}$$

2)
$$-\frac{1}{n_0}$$

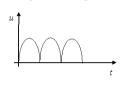
$$f = \frac{n_0 F}{60}$$

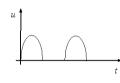

4)
$$f = 60np$$

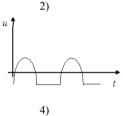
91. На рисунке изображен ...

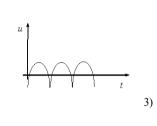
- 1) полевой транзистор
- 2) выпрямительный диод
- 3) биполярный транзистор
- 4) диодный тиристор

92. На рисунке изображена структура...

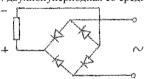



- 1) стабилитрона
- 2) полевого транзистора
- 3) выпрямительного диода
- 4) тиристора


93. На рисунке изображена структура...



- 1) диодного тиристора
- 2) полевого транзистора
- 3) стабилитрона
- 4) триодного тиристора
- 94. Двухполупериодной мостовой схеме выпрямления соответствует временная диаграмма напряжения...



95. Схема выпрямителя

- 1. однофазная однополупериодная
- 2. однофазная двухполупериодная мостовая
- 3. с умножителем напряжения
- 4. двухполупериодная со средней точкой резистора

96. Схеме включения транзистора с общим коллектором соответствует рисунок...

97. Закон Ома для участка цепи

1.
$$I = U \cdot R$$

$$2. I = \frac{U}{R}$$

3.
$$I = \frac{R}{IJ}$$
 4. $I = R \cdot U$

98. Формула второго закона Кирхгофа

1.
$$I = \frac{\sum R}{\sum E}$$

2. $I = \sum E \cdot \sum R$
3. $I = \frac{\sum E}{\sum R}$
4. $I = \frac{P}{\sum R}$

99. Скольжение в асинхронных электродвигателях

$$1. S = \frac{I_n}{I_n}$$

- 2. величина обратная угловой скорости ротора
- 3. величина характеризующая степень отставания частоты вращения магнитного поля статора (n_1) от частоты вращения ротора (n_2) $n_2 > n_1$

4.
$$S = \frac{n_1 - n_2}{n_1} \cdot 100\%$$

100. Три типа машин постоянного тока

- 1. шунтовые, сериесные, компаундные
- 2. сериесные, шунтовые, синхронные
- 3. компаундные, синхронные, сериесные
- 4. шунтовые, сериесные, синхронные

Вопросы к экзамену в устной форме

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое действующее значение переменного тока, его формула, из каких условий оно определяется?
- 2. Что такое взаимоиндукция, в каких устройствах она используется?
- 3. Закон Ома для пассивного участка и для всей цепи постоянного тока.

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Сформулируйте правило правой руки и закон Ленца для определения направления индуктированных ЭДС и токов.
- 2. Что такое трансформатор напряжения, его назначение, коэффициент трансформации?
- 3. Законы Кирхгофа и их применение для расчета сложной цепи постоянного тока.

Казанский Государственный аграрный университет ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3

По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое электромагнитная индукция, напишите формулу индуктированной ЭДС по Φ арадею?
- 2. Что означает класс точности электроизмерительных приборов, как его определяют.
- 3. Явления самоиндукции и взаимной индукции.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 4 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое вихревые токи, их вредное действие, способ погашения, а также использование в индукционных электронагревателях?
- 2. Закон Ома для участка цепи и полной замкнутой цеп постоянного тока?
- 3. Принцип получения синусоидальной э.д.с., её основные параметры: амплитуда, период, частота, начальная фаза.

Казанский Государственный аграрный университет ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 5

По лисшиплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое 3-х фазный ток? Напишите формулу трехфазной системы эдс и изобразите векторную диаграмму.
- 2. Что такое защитное заземление, его назначение, выполнение в 3-х и 4-х проводных сетях.
- 3. Что называется действующим значением синусоидального тока? Каково соотношение между действующим и максимальным значениям и тока?

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Изобразите схему соединения трехфазной 4^х проводной системы в звезду, покажите линейные и фазные напряжения, а также их соотношения.
- 2. Что такое вихревые токи, в каких устройствах они применяются?
- 3. Синусоидальный ток в цепи с активным сопротивлением. Уравнения напряжения и тока. Векторная диаграмма.

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №7

По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Напишите формулу определения мощности в цепях постоянного тока, активной и реактивной мощности переменного тока, в каких единицах они измеряются?
- 2. В чем отличие по устройству и внешней характеристике между шунтовым и компаундным генераторами постоянного тока?
- 3. Синусоидальный ток в цепи с индуктивностью. Векторная диаграмма. Индуктивное сопротивление.

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8

По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Какие виды сопротивлений существуют в цепях переменного тока, напишите формулы их определения.
- 2. Способы регулирования частоты вращения асинхронных двигателей.
- 3. Синусоидальный ток в цепи с конденсатором. Емкостное сопротивление. Векторная диаграмма.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 9

По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Напишите аналитическое выражение напряжений 3-х фазной системы и изобразите векторную диаграмму.
- 2. Два типа роторов асинхронных двигателей и способы их пуска.

3. Резонанс напряжений. В каких цепях возникает и при каком условии? В чем сущность этого явления?

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10

По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое резонанс напряжений, условия его возникновения, как изменяются параметры цепи (напряжение и сила тока) при резонансе.
- 2. Устройство и принцип действия асинхронного двигателя.
- 3. Какая мошность называется активной, реактивной, полной? Как они вычисляются и в каких единицах измеряются?

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 11

По лисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Напишите формулы активной, реактивной и полной мощности переменного тока, а также единицы их измерения.
- 2. Принцип работы полупроводникового диода.
- 3. Устройство, принцип работы однофазного силового трансформатора. Потери мощности в трансформаторе при его работе под нагрузкой.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 12

По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Принцип компенсации реактивной энергии и повышения *cos* ф.
- 2. Трансформатор тока, его назначений и коэффициент трансформации.
- 3. Назначение. схема включения, особенность режима работы измерительного трансформатора напряжения.

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Напишите аналитическое выражение переменного напряжения и силу тока в цепи с емкостным сопротивлением; изобразите векторную диаграмму.
- 2. Что такое скольжение в асинхронных двигателях?
- 3. Устройство, принцип работы генератора постоянного тока. Уравнение Э.Д.С. якоря. Классификация генераторов по способу возбуждения, область их применения.

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 14 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Напишите аналитические выражения переменного напряжения и силу тока цепи с индуктивным сопротивлением; изобразите векторную диаграмму.
- 2. Изобразите схемы и дайте пояснение работы шунтового и компаундного генераторов постоянного тока.
- 3. Устройство, принцип работы двигателя постоянного тока. Уравнение вращающего момента и частоты врашения якоря.

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Напишите аналитические выражения переменного напряжения и силу тока цепи с активным сопротивлением; изобразите векторную диаграмму.
- 2. Расскажите принцип действия полупроводникового диода.
- 3. Классификация двигателей постоянного тока по способу возбуждения магнитного потока. Достоинства и недостатки этих двигателей, область применения.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 16 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Расскажите принцип образования врашающегося магнитного поля трехфазным током: где оно используется?
- 2. Принцип работы схемы полупроводникового транзистора.
- 3. Какое различие существует в схемах и характеристиках двигателей постоянного тока с параллельным и последовательным возбуждением?

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 17 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое коэффициент мощности $\cos \varphi$, как его повысить?
- 2. Расскажите работу схемы однофазного однополупериодного выпрямления. Формула коэффициента выпрямления.
- 3. От чего зависит частота вращения якоря у двигателя постоянного тока и какими способами её можно регулировать?

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 18

По лиспиплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Назовите магнитные материалы. Что такое магнитно-мягкие и магнитно-твердые материалы; области их применения?
- 2. Расскажите работу однофазной мостовой схемы выпрямления.
- 3. Как получается и в каких машинах используется вращающееся магнитное поле? От чего зависит частота вращения поля?

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19 По лиспиплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Напишите формулу полного сопротивления цепи переменного тока, поясните ее составляющие?
- 2. Расскажите работу схемы емкостного (конденсаторного) сглаживающего фильтра.
- 3. Способы пуска асинхронных двигателей с короткозамкнутым ротором. Значение снижения пускового тока.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 20 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое высокое и низкое напряжение, в каких установках они применяются?
- 2. Расскажите работу схемы дроссельного фильтра.
- 3. Схема включения, порядок пуска и механическая характеристика асинхронного двигателя с фазным ротором (контактными кольцами).

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 21 По лисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Устройство и принцип действия синхронного генератора 3-х фазного тока?
- 2. Что такое вихревые токи, в каких устройствах они применяются?
- 3. Способы регулирования частоты вращения трехфазных асинхронных двигателей.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 22 По лисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Устройство и принцип действия трансформатора?
- 2. Что такое защитное заземление, его назначение, выполнение в 3-х и 4-х проводных сетях.
- 3. Устройство, принцип работы и характеристики трехфазного синхронного генератора.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 23 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Как определяется к.п.д. трансформатора с помощью опытов холостого хода и короткого замыкания?
- 2. Закон Ома для участка цепи и полной замкнутой цеп постоянного тока?
- 3. Устройство, принцип работы, достоинства и недостатки синхронного двигателя.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 24 По лисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое электрическая прочность и пробивное напряжение изоляционного материала, как оно определяется?
- 2. Способы регулирования частоты вращения асинхронных двигателей.
- 3. Устройство, принцип работы, достоинства и недостатки электроизмерительных приборов магнитоэлектрической системы. Область применения.

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 25 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Устройство и принцип действия генератора постоянного тока?
- 2. Что означает класс точности электроизмерительных приборов, как его определяют.
- 3. Устройство, принцип работы, достоинства и недостатки электроизмерительных приборов электромагнитной системы. Область применения.

Казанский Государственный аграрный университет

ЭКЗАМЕНАПИОННЫЙ БИЛЕТ № 26 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое самоиндукция, индуктивное сопротивление, автотрансформатор?
- 2. Два типа роторов асинхронных двигателей и способы их пуска.
- 3. Устройство, принцип работы, достоинства и недостатки электроизмерительных приборов электродинамической системы. Область применения.

Казанский Государственный аграрный университет ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 27

По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

1. Назовите виды схем выпрямления переменного тока в постоянный, что такое коэффициент выпрямления?

- 2. Устройство и принцип действия асинхронного двигателя.
- 3. Как посредством однофазных ваттметров измеряют активную мощность в трехпроводной трехфазной цепи при несимметричной и симметричной нагрузке?

Казанский Государственный аграрный университет ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 28 По лиспиплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое автотрансформатор, его схема и принцип действия?
- 2. Принцип работы полупроводникового диода.
- 3. Погрешности приборов. Как определяется погрешность, вносимая приборами при прямых и косвенных измерениях?

Казанский Государственный аграрный университет ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 29

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 29 По дисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое сглаживающие фильтры, их виды и принцип действия?
- 2. Трансформатор тока, его назначений и коэффициент трансформации.
- 3. Электропроводность полупроводников. Образование p-n перехода.

Казанский Государственный аграрный университет

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 30 По лисциплине ЭЛЕКТРОНИКА И ЭЛЕКТРОТЕХНИКА

- 1. Что такое трансформатор тока, его назначение, коэффициент трансформации?
- 2. Изобразите схемы и дайте пояснение работы шунтового и компаундного генераторов постоянного тока.
- 3. Классификация, основные параметры полупроводниковых выпрямителей.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮШИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Лекции оцениваются по посещаемости, активности, умению выделить главную мысль.

Лабораторные занятия оцениваются по самостоятельности выполнения работы, грамотности в оформлении, правильности выполнения.

Самостоятельная работа оценивается по качеству и количеству выполненных домашних работ, грамотности в оформлении, правильности выполнения.

Промежуточная аттестация проводится в форме экзамена.

Критерии оценки экзамена в тестовой форме: количество баллов или удовлетворительно, хорошо, отлично. Для получения соответствующей оценки на экзамене по курсу используется накопительная система балльно-рейтинговой работы студентов. Итоговая оценка складывается из суммы баллов или оценок, полученных по всем разделам курса и суммы баллов полученной на экзамене.

Критерии оценки уровня знаний студентов с использованием теста на экзамене по учебной дисциплине

Оценка	Характеристики ответа студента		
Отлично	86-100 % правильных ответов		
Хорошо	71-85 %		
Удовлетворительно	51- 70%		
Неудовлетворительно	Менее 51 %		

Количество баллов и оценка неудовлетворительно, удовлетворительно, хорошо, отлично определяются программными средствами по количеству правильных ответов к количеству случайно выбранных вопросов.

Критерии оценивания компетенций следующие:

- 1. Ответы имеют полные решения (с правильным ответом). Их содержание свидетельствует об уверенных знаниях обучающегося и о его умении решать профессиональные задачи, оценивается в 5 баллов (отлично);
- 2. Более 75 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует о достаточных знаниях обучающегося и его умении решать профессиональные задачи 4 балла (хорошо);
- 3. Не менее 50 % ответов имеют полные решения (с правильным ответом) Их содержание свидетельствует об удовлетворительных знаниях обучающегося и о его ограниченном умении решать профессиональные задачи, соответствующие его будущей квалификации 3 балла (удовлетворительно);
- 4. Менее 50 % ответов имеют решения с правильным ответом. Их содержание свидетельствует о слабых знаниях обучающегося и его неумении решать профессиональные задачи 2 балла (неудовлетворительно).

26 27