Министерство сельского хозяйства и продовольствия Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский государственный аграрный университет»

Кафедра агрохимии и почвоведения

Выпускная квалификационная работа (ВКР) бакалавра

«Применение удобрений и урожайность сельскохозяйственных культур по Пестречинскому муниципальному району за 2005-2017 гг»

Исполнитель- бакалавр 4 курса агрономического факультета

Емельянов Рафаэль Маратович

Научный руководитель к.с-х наук, доцент

Фасхутдинов Ф.Ш.

Допущена к защите

Зав. кафедрой к.с-х наук, доцент.

Миникаев Р.В.

Казань-2018

Министерство сельского хозяйства и продовольствия Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский государственный аграрный университет»

Кафедра агрохимии и почвоведения

Выпускная квалификационная работа (ВКР) бакалавра

«Применение удобрений и урожайность сельскохозяйственных культур по Пестречинскому муниципальному району за 2005-2017 гг»

Исполнитель- бакалавр 4 курса агрономического факультета

Емельянов Рафаэль Маратович

Научный руководитель

Фасхутдинов Ф.Ш.

к.с-х наук, доцент

Допущена к защите

Зав. кафедрой к.с-х наук, доцент.

Миникаев Р.В.

Введение

Сохранение и повышение плодородия почв является одной из важнейших национальных и социально-экономических проблем. Потенциальное плодородие почв косвенно влияет на урожайность сельскохозяйственных культур за счет улучшения технологических условий их выращивания и стабилизации внешних факторов. Основным критерием эффективного плодородия почв является продуктивность продукта и контроль качества его содержания в питательных веществах подвижных форм. Уровень создания или поддержания плодородия почвы должен соответствовать уровню урожайности[5].

Мировой и отечественный опыт показывает, что сохранение и улучшение плодородия почв возможно только с учетом всех необходимых агрохимических и экологических факторов, нормального роста и развития сельскохозяйственных растений, а также ряда организаций, агротехнических, агрохимических, фитосанитарных, противоэрозионных, мелиоративных и других видов деятельности. Только в этом случае удовлетворяются все потребности растений в питательных элементах, внешней среде и обеспечивается безопасность почвы от разрушения или неблагоприятного изменения ее свойств[25].

Одним из основных компонентов материально-технической базы сельского хозяйства являются агрохимикаты: минеральные удобрения, средства борьбы с сорняками, вредителями растений, химические вещества, используемые для улучшения структуры почвы, рекультивация и др. Химия также включает использование известкового материала для кислых почв[32].

По мере роста предложения минеральных удобрений их качество улучшается. Повышается высокая концентрация и сложный выход керамики, повышается концентрация питательных веществ в удобрениях. Активные вещества с более высоким содержанием меньше транспортируются, хранятся и
вводятся в почву в ненужных балластах, снижая затраты.

В связи с естественными характеристиками эффективности сельскохозяйственного производства минеральных удобрений следует определять на основе данных не менее трех лет[2].

Фермеры Татарстана приложили огромные усилия для повышения плодородия пахотных земель. Наиболее эффективным воздействием на почву является химическая регенерация, внесение минеральных и органических удобрений, использование оптимальной системы севооборота и ряда других технологий. Данная заключительная работа посвящена определению степени плодородия почв, используемых в Пестречинском муниципальном районе Республики Татарстан

1. Обзор литературы

Высокий урожай на нейтральной (РН 6, 0-7, 0) может быть предоставлено только в почву поливной рецикцион среды. Для тяжелых яровая пшеница пашня, почва плывет, а также песочный почва суглинистая и не очень, где нет влаги. При этом, большая часть питательных веществ в почве, как непросто, поэтому многие были ждать нельзя высокую продуктивность сельскохозяйственных культур минеральных удобрений[11]. Разработана система удобрений яровой пшеницы ходе давно, но на самом деле их нельзя применять на фермах конкретных почву, климатических и агротехнических обращаясь к условиям невозможно. Для рационального использования питательных почвы применение удобрений надо следить постоянно фитонутриентларны состояние и динамику [4]. Во многом урожайность зерновых культур до посевной всхожесть до погодных условий. Источники холодного с началом понимания и отложить 12-15 дней. В этот период выход растений семена грибы выросли и поле для дальнейшего развития города, которые страдают заболеваний. [22]. Главное достижение плодородие почв формируются за счет, а за счет дополнительного урожая других культур, в том числе за счет применения удобрений.

Цены на минеральные удобрения в России ограничения на их использование и применение экономических условиях урожайность зерновых культур реализм 14 по 16, но не/га. Влажность почвы и удобрений, у которого было достаточно продуктов является одним из самых эффективных средств повышения быстро, поэтому сельскохозяйственных культур, направленных на повышение плодородия плодородия почвы и применения удобрений является одним из важнейших мест в системе агротехнических мероприятий[3]. Который используется научная база местных органических и минеральных удобрений, ленточные характеристик удовлетворения всех культур значительно повышает повышает плодородия и качества. Рационального растений при

использовании удобрений на тех участках, сахар, крахмал, масло, растет объем белков и витаминов. Туфрактан интенсивного земледелия гумус которые дают высокий урожай питательных веществ и выпуск их минераллаштыруга помогает. Этот процесс регулирования основной инструмент регулирования состояния вегетатив почвы при использовании удобрений, которые можно только полностью. Как известно, один из факторов, определяющих развитие посевов-решающую роль кухни со вступлением России в ВТО. Действительно, во всем мире, а также применения удобрений и урожайности в отдельных странах и регионах если посмотреть динамику показателя тесные связи с есть.

Зерна общей площади зерновых культур в России 60%. Среди них яровой пшеницы, ячменя и овса есть. У яровой пшеницы культура является важнейшим ашын товаров. В основном континентальный климат в Поволжье, Урал, Сибирь развивается в регионах, где озимая пшеница зимовке озимых из-за погодных условий не вызывает дружеских или сухого выдержать взгляд. Довольно распространенное озимой пшеницы весеннего зоны европейской части России. В последние годы в России составляет 14-15 тыс. га урожайность яровой пшеницы.

Постановление Центрального института земельных региона по данным за 20 лет (1988-2008 гг.) на полях яровой пшеницы выросла в Московской области-72%, а волатильность-60% 86% до.

Эффективность удобрений и плодородия зерновых культур в районах степной основных фактора дефицита влаги в почве тормозит со вступлением России в ВТО. Особого внимания требуют фитосанитарному почвы и семян этих условий, так как в этих условиях зерна ржи, в корневую с мукой на развитие гнилига ставками. Во время сева пшеницы вновь, как и на другие культуры, пшеницы болезнями и вредителями привлечении значительное увеличение ущерба, умаление развития растений питательных веществ из почвы и удобрений страдает от использования[8]. Начальных стадиях развития пшеницы развитие и использование питательных веществ ниже. Хотя в это время рас-

тения выросли, когда коник будет питательных компонентов из биологических тканей, а в начале и органов половой трубки, при этом в почве питательных веществ пшеницы, которые крайне востребован. Питательных веществ, в частности при наличии сильных фосфор дефицит пшеницы фруктов и растений нагнетать отношении органов репродуктивной стадии закладывается питательных веществ, что не позволяет ему в дальнейшем добиться своих потенциальных продуктов, на первой стадии развития, чем при модернизации и после использования исчезает из льна оказывает негативное воздействие на фосфор не зря, но приводит к снижению урожая.

Выход трубы в результате туфрактан уровень развития растений и потребления питательных веществ увеличилось в разы. В целом питательных веществ постепенно растет спрос для яровой пшеницы, потом до начала мощь растет, а на стадии выхода труб и Уша до конца увеличивается. За это время питательных веществ яровой пшеницы от общего числа 60-70% около использование.

Продовольственных культур в азотных питания яровой пшеницы спросом. 1 кг в среднем 34-38 тонн зерна, по дороге степной засушливый районах заседание N, P2O5 K2O 12 кг и 28 кг используется достаточный и более влажность-28-30 кг n, P2O5 и K2O кг кг 11-12 22-25[6].

Урожай зерна 30 кг/га и, по площади, яровой пшеницы азота 90-110 кг, 35-40 кг кг Р2О5 и К2О составляет 66-75. Использование азота в почве яровая пшеница в основном останавливается на период расцвета или зерна возникновения, а в некоторых случаях, влажность высокой, в долго не из-за зерна поспели период потребления азота. Фосфор в туфрактан пшеницы, как правило, не молока, молоко не у зерна[7].Применение калия из почвы яровой пшеницы прекращается в фазе цветения-цветения. За это время на растениях наблюдается наибольшая перегруженность. После начала цветения калий вытекает из вегетативных органов через корни и выщелачивается из листьев через осадок. При уборке растения текут и / или выщелачивают 20-40% калия из листьев с высокими осадками[18].

Благоприятные погодные условия, но недостаточно питательных веществ при отсутствии сырого зерна на въезд элементов туфрактан это продолжается. В период вегетации растений при этом обеспечивают высокий уровень азота и фосфора в период его расцвета во время использования прекращается через корни, а азот и фосфор скопления, в основном, осуществляться за счет питательных веществ из выпуска от листья и стебель.

В целом использование питательных веществ через корни и листья желтые на зерновых нижняя мертвая от цветов почве в стране после них: у молодых организм питательных веществ и материалов для предприятий сосредоточена потребление питательных веществ резко снижается, что начала освоения перераспределения питательных органов, органов репродуктивного потока тех, которые появились период. Таким образом, корни, корни, ограничено, а их функциональной активности которых и останавливается на слабых. Хотя в это время растения не теряет способности растений поглощать питательных веществ через листья и стеб ипотеке. Последние листья растений азота покрытие-молочный белок и клейковина пшеницы справиться в практике сельского хозяйства для повышения суждено. Калий играет важную роль потоков перепределении ассимиляция растений

. Калий калий питательных веществ из органов за участие в движении углов, что органы репродуктивной ассимиляцион повышения уровня массы зерна позволят увеличить производительность, утверждает.

Высокий урожай зерновых культур, азот и фосфор въезд и на период до выхода из кустарников, Плоды шаровидные всех дополнительных подводя корневой системы в стебель, хорошо. Пшеницы весной 15-20кг/га N около 6-и 8р205 15-20КГ / га К2О. Поэтому до начала сева пшеницы в достаточном объеме питательных веществ в почве должна быть. Концентрация в почве последние стадии мало ограничены в количестве урожайность пшеницы практически не снижается, он оказывается в необходимом объеме обеспечивает потребности фосфор и азот. Дефицит азота приводит к значительному снижению урожая пшеницы в первые дни, во втором-мало белка приводит к

ухудшения качества зерна. Урожай яровой пшеницы и других культур содержание азота в почве минеральных удобрений для получения запланированных система диагностики почв агрохимическое исследования, касающиеся информации должна основываться последующие культуры со вступлением России в ВТО с учетом влияния применяемых удобрений на Далее, сев!". Яровая пшеница удобрения в почву азотных постановление особого внимания. Осень и весна чистый черный запас азота в почве минеральных землях достаточно комфортабельных условиях накопительной азота удобрений эффективность одной дерн Кемерово-подзолист и серых лесных почв значительно ниже, чем на.

Страны Южной и Юго-Восточной степи в традиционных районах Каштановая почва удобрения фосфор более богатый урожай зерна в земельных и черный соответственно. Это оптимальная доза азотных удобрений для яровой пшеницы в почве со вступлением России в ВТО 30-40 кг/до рублей. Дерн Кемерово - подзолист и серо-лесных почв и урожайность растений, а также в составе азотно обеспечение связи. Объем азота удобрений и азота, полученных из Казахстана доения одной 5-10 кг/га до степени зависят от условий развития, при этом до 10-20 кг и более азота общего развития колебленә из пшеницы калий рублей. Фосфат и калий удобрений и почвы в среднем на одной из свободных пахотных влияние в регионе достаточно большой (5-10, но не/га), а при фосфат и калий почвы в переменный, как правило, в 90 и 120 кг и не более. Результаты [32].

Западной и Восточной Сибири, N30-60 с использованием урожайность яровой пшеницы увеличилась до 5-9 градусов. Со вступлением России в ВТО влияние погодных условий на удобрения яровой пшеницы, на почве фосфор и калий эффективные форм, а также зависит от характеристик сорта.

Дерн Кемерово-подзолист и серых лесных районах Земли самая высокая эффективность азотных удобрений преимущество, что со вступлением России в ВТО; результат одной степи в районах засушливого блюда значительно снижаются. Каштановая почвы и азота удобрений в воду, где было много про-

стых но время эффективности одной и многих случаях выше, чем постановление районы Земли. Азот и калий в условиях орошения урожайность яровой пшеницы повышается до 15-30 и более гектаров.

Геосетка в регион итогам практики по оптимальным для зерновых культур доз азота 40-120кг/га составил.

Почвы-климатических условиях оптимальная доза азотных удобрений предшественников, которые во многом со вступлением России в ВТО. Водоемов и гибели растений яровой пшеницы зернобобовых и многолетних бобра при подаче оборота и зернобобовых составляет 40-70 кг доза азота для растений, для бобра-80-10 кг / га[27].

Таким образом, со вступлением России в ВТО в почву удобренийклиматических зонам и отдельных полевых культур на влияние выглядит поразному. Самым важным фактором повышения продуктивность сельскохозяйственных культур на выявление особенностей и развития полей необходимо внимательно ознакомиться с условиями. Но во всех климатических зонах роста урожая, в основном, плодородие почв, водного режима и применения удобрений зависит от температуры, а также сорта продукта осуществляется за счет достижения.

Эффективность азотных удобрений особенно со вступлением России в ВТО влияние влаги и тепла данные условия. Европейской части Российской Федерации лесостепной и лесостепной вода-теплая Министерства увеличивается ухудшения состояния влаги азотных удобрений, снижение роли административного штрафа.

Органические вещества в составе азотно-аммиачной минераллаштыруның интенсивность существенно влияет на эффективность применения азотных удобрений в почве[6].

Оптимальная температура почвы способность почвы азота в нитрат содержащий условия и помогает собрать корни гуми, что одной плодородия азота удобрений значительно снижается. Реакция яровой пшеницы азота из почвы увеличивается на пашня в[36].

Все страны почвы-климатических зонах почвы азотных удобрений-фосфор и водных ресурсов достаточно тесно связанных с эффективность. Лучшие почвы очень высокая эффективно обеспечивают фосфор, азот и калий. Участок под весенние посадки

Часто минимум или пшеницы азота фосфор. Калий удобрений часто плохо себя край. Оптимизация питания пшеницы в почве минеральные азот, фосфор и калий, имеющих важное значение для диагностики. Многих регионах Сибири азота почвы питание почвы к весеннему севу С до диагностики распространенные в европейской части России—в нитрат азота в Аммоний и нитрат основана на выявлении содержания [30]. Разнообразие пакетных диагностики почвенного покрова почвы азотно питания, а также позволяет учитывать дальнейшую погоду. Приблизительно такой уровень содержания N-NO3 в почве, что характеризует пшеницы " и азотном питании почвенных азотных удобрениях культур и прекурсоров без необходимости. Однако для более рационального применения азотных удобрений во всех почвах и климатических зонах Российской Федерации, с учетом предыдущего уровня удобрений, состава зерна и планируемой урожайности, были разработаны более дифференцированные по питанию растения сорта[12]. Использование органических удобрений оказывает значительное положительное влияние на урожайность зерна. На дерново-подзолистых, серых лесных почвах, подзолистых и выщелачиваемых черноземах с использованием удобрений в дозе 20-30т/га урожайность зерна яровой пшеницы в среднем увеличивается на 5-10С/га. Однако в настоящее время органические удобрения для весенних культур, за редким исключением, не способствуют. В южных пастбищных районах фекалии, как правило, не обеспечивают ожидаемого увеличения урожайности из-за недостаточной влажности почвы, в то время как в районах с достаточной и избыточной влажностью, где дефицит фекалий в настоящее время является предпочтительным.

Органические, фосфорные и калийные удобрения для весенних культур следует проводить осенью, преимущественно во время обработки почвы на глу-

бине (22-26 см). Однако в мелководных песчаных почвах органические и минеральные удобрения следует применять перед весенним посевом (во время посева) пшеницы, так как осеннее применение позволяет не только очищать корневой слой почвы нитратами, но и коллоидными частями фосфора, калия и органических удобрений.

Эффективность фосфатных удобрений зависит от содержания подвижных фосфатов в почве. При низкой почвенной доступности подвижных фосфатов (40-80 мг/кг P2O5), фосфатные удобрения очень эффективны при увеличении дозы до 90-120 кг/га P2O5. Среднее содержание подвижного фосфата в почве (100-160мг/кг P2O5) доза фосфатного удобрения должна составлять 45-60кг/га. В хорошо пахотных почвах, характеризующихся высоким содержанием подвижных фосфатов (>200-250 мг/кг P2O5), применение фосфорных удобрений является неэффективным, поэтому необходимо ограничить применение 10-15 кг/га P2O5 в посевных почвах.

С учетом метаболизма калия в почве и содержания других питательных веществ, его зернистого состава и последующего эффекта введения в предшественник калия, определяется доза калия. В зависимости от условий роста доза калия колеблется от 20 до 90 кг/га. При выращивании в серой лесной почве дерново-подзолистой и яровой пшеницы при дозировке 60-90кг/га использование калия (К2о) для выщелачивания традиционных почв и листьев почв и типичных черноземов-40-60кг/га является достаточно эффективным. В начале развития зерновых культур необходимо иметь хорошее растение со всеми макро-и микроэлементами, особенно фосфором, так как фосфор участвует во всех биохимических процессах, способствующих росту и развитию растений. Таким образом, наряду с основными удобрениями, важным методом повышения урожайности яровой пшеницы является посев (некоторых) удобрений с фосфором, так как из-за слаборазвитой корневой системы фосфор наиболее подвержен воздействию растений после прорастания. Использование высокоэффективного фосфора в виде гранулированного суперфос-

фата или аминофосфата в малых количествах при посеве яровой пшеницы (8-12 кг/га P2O5) характерно для многих регионов страны[7].

Многие исследования показывают, что яровые культуры, в том числе яровая пшеница, менее эффективны, чем азотные удобрения до посева по сравнению с озимыми культурами. Однако при планировании высоких урожаев в зоне достаточной влажности, а также в условиях орошения, частичное применение азотных удобрений-до посева и на этапе выхода в трубу обеспечивает более высокую урожайность, чем при введении всей дозы азота перед посевом[13].

Производительность является наиболее важным показателем, отражающим степень интенсификации сельскохозяйственного производства. Качество плановых экономических уровней этих экономических категорий, таких как стоимость, производительность, рентабельность и другие экономические показатели, во многом зависит от надлежащего планирования и прогнозирования урожайности сельскохозяйственных культур[19]. Высокие дозы азотных и калийных удобрений, особенно при тонком наполнении пружин, повышают осмотическое давление в слое почвенного раствора. В результате возможна частичная гибель ветвей и резкое падение воды и питательных веществ в растениях. Влияние удобрений на урожайность яровой пшеницы существенно зависит от климатических условий, типа почвы, состава зерна, дозы и способа внесения удобрений, а также от предыдущих культур. Урожайность яровой пшеницы в лесостепной зоне и в северных районах недр часто зависит от основных удобрений, которые обеспечивают ее азотом. Воздействие фосфора и калия в этих регионах часто отражается на низком и нестабильном увеличении производства продуктов питания. Азотное удобрение в качестве основного азотного удобрения на выходе 3-6С/га, азотно-калиевые питательные частицы общей длины 5-8С / га[31].

Таким образом, урожайность сельскохозяйственных культур играет главную роль в каждой ферме, и сельхозпроизводители должны стремиться к постоянному увеличению урожайности всех культур. В нашем случае мы будем

учитывать урожайность зерновых культур, которые играют решающую роль. Во-первых, это хлеб, еда и корма для животных. Для увеличения урожайности этих культур необходимо знать факторы, влияющие на них. Работа посвящена анализу динамики урожайности зерновых в условиях Клина и количества удобрений в Пестречинском муниципальном районе Республики Татарстан.

II. ЗАДАЧИ, МЕТОДИКА И УСЛОВИЯ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЯ

2.1 Методика проведения исследований

Объектом исследования являются пахотные земли и статистические данные Пестречинского муниципального района Республики Татарстан. Проанализированы урожайность основных культур, содержание питательных веществ в почве, а также содержание минеральных и органических удобрений. Данные о зерновом режиме почвы и объемах удобрений получены из материалов обследования федерального государственного университета"ЦАС" Татарский ". Мониторинг режима зерна, количества удобрений и урожайности основных культур во всех категориях хозяйств Пестречинского муниципального района осуществлялся на основе фактических данных по количеству посевных площадей, урожайности культур, валового урожая и удобрений. Информация о урожайности сельскохозяйственных культур, площади посевных площадей, общих затратах/урожаях взята из таблиц 929 и 929 статистического отчета.

Расчеты проводятся в соответствии с руководящими принципами Министерства агрохимии и почвоведения казанского нагорья для определения запасов элементов в почве и объема растениеводства этих элементов, и необходимые данные для этих расчетов взяты из этих инструкций.

Сравнительная оценка и тесная связь с содержанием питательных веществ в почве, удобрениями и урожайностью сельскохозяйственных культур были проведены с помощью статистического метода анализа приложений для пакета Microsoft office Excel 2010. Статистическая обработка данных культур осуществляется методом скользящих средних с интервалом в 5 лет

2.2 Общие сведения о Пестречинском муниципальном районе

Пестречинский район расположен в западной части Поволжья (Предкамье). Граничит с Северным нагорьем и Арским районом, восточным с Тюлячинским, южным-с рыбно-Слободским и Лаишевским районами, западным-с Казанью. Его территория составляет 1361 км2. Пестречинский муниципальный район расположен на Волго-Вятском плато, поверхность которого относительно невысока, слегка холмистая равнина, сильно отступает в долину реки и овраги. Гидрологическая сеть района представлена Р. Миша (его нынешняя средняя часть) и его притоки.

Район сельскохозяйственный. Все сельскохозяйственные земли площадью 1123 кв. м выращивают зерновые, бобовые и кормовые культуры. Животноводство-это производство молока и мяса. На территории области функционируют 18 сельскохозяйственных предприятий, 3 дочерних фермерских хозяйства, 12 обществ с ограниченной ответственностью, 2-акционерных общества, 1-отдел казанского жеребьевского хозяйства. В районе есть. Есть месторождения торфа. Торфяники в основном распространены в низменных районах бассейна и в речных долинах. Торф характеризуется высоким содержанием золы, значительным содержанием азота, фосфора и кальция в нейтральных реакциях, что позволяет успешно использовать торф в качестве удобрения. Являются: "соя-Кулаево", "Марс", ОАО а/ф"Рацин".

Современная экологическая ситуация по экологическому и географическому положению Пестречинского муниципального района оценивается как умеренно напряженная,по ряду причин и факторов, в первую очередь, отнесенная к производству(наличие промышленных предприятий в регионе и прилегающих к нему муниципальных образований, высокий процент)и природная (трансграничная передача загрязненных веществ в районах воздушного бассейна с территории Казани, наличие глубоких и обширных долин рек.

Сетки, толстые овраги-пучковые сети, наличие охраняемых территорий и многое другое.). Территория Пестречинского муниципального района испытывает давление на развитие, характерное для всех районов, в среднем примыкающих к городу Казани, и может быть отнесена к территориям с экологическими проблемами в конкретных проблемных районах. В целом, экономическое и географическое положение Пестречинского муниципального района является достаточно благоприятным для дальнейшего формирования района как высокоразвитой агропромышленной, промышленной, коммерческой, инфраструктурной, рекреационной зоны республики, что будет способствовать развитию казанского муниципального района.

2.3. Климатическая характеристика

В зависимости от климатических условий, Пестречинский муниципальный район характеризуется умеренно-континентальным, относительно влажным и прохладным летом и умеренно-холодной и снежной зимой.

Температурный режим характеризуется следующими значениями: средняя месячная максимальная температура воздуха за самый жаркий месяц (июль) составляет 25. 40С, температура холодного периода (средняя температура самой холодной части отопительного периода) составляет -17,10 С, средняя годовая температура воздуха+3,90 с. К концу второго десятилетия апреля снег исчез. Лето характеризуется среднемесячной температурой в 16 лет. От 8 до 19. В диапазоне 90С, с июля по август, количество осадков составляет 185. 6 мм. Температура почвы на глубине пахотного слоя повышается с мая по 4 июня-50С, с июня по июль-на 2-30С. Осень характеризуется теплой, чистой и спокойной погодой. Температура воздуха 11,20 С в сентябре упала на 7,40 С к октябрю. Зима начинается в конце октября со снегопадом, который стабилизируется к концу второго десятилетия ноября. Высота снежного покрова составляет 50 см,область получает 547,2 мм осадков в год. Среднемесячное количество осадков составляет 45. 6 мм. Максимальное количество осадков выпадает в период с июня по октябрь. Конец весны и начало осени часто бывают сухими, что негативно сказывается на росте и развитии растений и продуктивности сельскохозяйственных культур. Таким образом, Пестречинский муниципальный район является относительно холодной, но довольно влажной территорией, которая считается опасной для климатических условий. Весенние и осенние заморозки, град, сухой ветер, частые летние засухи и зимние морозы, дожди и дожди-град во многом усложняют сельскохозяйственные работы. Правильное использование климатических ресурсов означает

При реализации экономических работ (особенно в сельском хозяйстве) учитываются преимущественно благоприятные и неблагоприятные климатические особенности.

2.4 Характеристика почвенного покрова

Пестречинский муниципальный район, расположенный в южной части лесной зоны, обладает достаточной влажностью, преимущественно лесными почвами подзолистого типа. Различия в почвах в регионе выражаются в подзолистых, серых лесах, карбонатных и аллювиальных почвах.

Почвенный покров Пестречинского муниципального района характеризуется снижением плодородия, степени естественного плодородия - "ниже среднего".

Серые лесные почвы занимают большую часть территории региона и представлены двумя подтипами—светло-серыми и серыми лесами. Они образуются под относительно бедной травяной растительностью. Среди них преобладают светло-серые лесные почвы, которые являются универсальными. Пахотный слой светло-серой лесной почвы достигает 18-22 см, содержание гумуса в верхнем горизонте-2. 4-4. 2%, но в большинстве случаев 2. 9-3. 3%, количество основания абсорбции 16-20 мг/ЭК в 100 г почвы, ПЭ-аш— 5,0-5,9 — трусливые почвы-это соединения с плохой подвижностью фосфора и калия, физико-химические свойства которых близки к дерново-подзолистым. Серые лесные почвы встречаются фрагментарно на территории Северо-Западной, Западной областей. Мощность пахотного слоя составляет 22-35 см, содержание гумуса-3,6-5,7%, количество абсорбирующего основания-22-31 мг/100 г почвы, рн5. 2-6. 1. В почву поступает большое количество азота, который поглощает калий и усваиваемый фосфор.

Дерново-подзолистые почвы занимают большую площадь в северной, северо-западной части города, представлены слабыми и средне-подзолистыми подтипами. С увеличением содержания золы количество питательных ве-

ществ уменьшается, уровень гумуса в слое электроэнергии, повышается кислотность. Они имеют различное распределение частиц по размерам-от песчаных до глинистых. Структура дерново-подзолистых почв выглядит следующим образом: пахотный слой земли (АП) является лесисто-серым, хрупким или неструктурированным. Ниже находится гумус-кумулятивный или дерновый горизонт (А1), А еще ниже-подзолистый (А2), который сначала заменяется переходом, а затем миражом, постепенно превращаясь в грунт или материнскую породу.

Дерново-карбонатные почвы распространены в малых районах Восточной и северной части рассматриваемого региона и представляют собой типичные (правый склон реки Меша, левый склон реки Киба), личед и подзолистые (долина реки Иинки).

Помимо ленточных типов почв на территории Пестречинского муниципального района существуют и такие виды аллювиальных почв. Они формируются в условиях затопления. В них есть лучшие естественные поля. Они представлены аллювиально-дерново-подзолистыми и аллювиально-дерново-подзолистыми карбонатными подтипами.

3. Результаты исследований

3.1 Структура посевных площадей основных сельскохозяйственных культур за 2005-2017гг.

Оптимальная структура сельскохозяйственных угодий и устойчивое функционирование сельскохозяйственных ландшафтов являются ключевыми вопросами для сельскохозяйственных систем. Общеизвестно, что на долю посевных площадей различных культур существенное влияние оказывают различные хозяйствующие субъекты, различные виды специализированных предприятий, а также большая волатильность зернового рынка.

За последние тринадцать лет почти половина посевных площадей Пестречинского муниципального района занята зерновыми культурами; озимая пшеница, озимая рожь, яровая пшеница, ячмень, овес, на долю которых приходится 45. 2% посевной площади (Таблица 1). Регионы между этими культурами распределены неравномерно, что видно из таблицы. 1, максимальная площадь занята яровой пшеницей, в среднем около 16. 5% ячменя в среднем составляет 14. 4% озимых культур представлены озимой ржаной и озимой пшеницей, из них 12. В регионе выделено 3% пахотных земель. За последние одиннадцать лет овес занимал в среднем 1668 га или 2 га. 1% пахотных земель. В аграрной системе Республики Татарстан оптимальная доля яровых культур должна быть на уровне 30-35%, в том числе яровой пшеницы-14-20%, ячменя-12-16%, овса-до 5-7%. Требования по сравнению с фактическим распределением пахотных земель Пестречинского муниципального района (рисунок.1) мы видим, что нынешняя структура не имеет существенно отличающихся требований.

Таблица 1 Структура посевных площадей основных сельскохозяйственных культур за 2005-2017гг.

Культуры	Площадь га	в % к пашни	
Озимая пшеница	4111,6	5,3	
Озимая рожь	5476,3	7,0	
Яровая пшеница	12908,7	16,5	
Ячмень	11248,9	14,4	
Овес	1668,8	2,1	
Всего	35414,3	45,2	
Пашня всего	78300	100,0	

Структура посевных площадей основных сельскохозяйственных культур за 2005-2017гг. в % к площади пашни

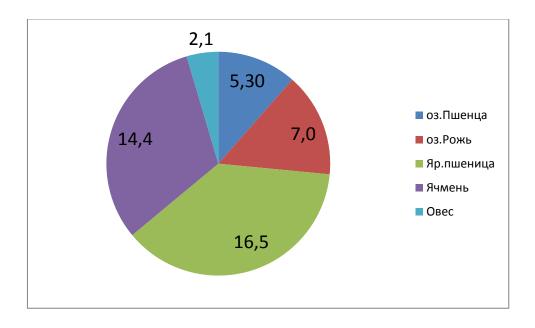


Рисунок 1. Структура посевных площадей основных сельскохозяйственных культур за 2005-2017гг

3.2 Урожайность основных с/х культур за 2005-2017гг.

Урожайность озимой пшеницы в Пестречинском районе за последние 13 лет очень сильно колебалось, максимальная урожайность отмечено в 2017 году- 36,2 ц/га минимальная в 2010 году-7,3 ц/га (таблица 2). Вероятнее всего, что основной причиной низкой урожайности в 2010 году являются неблагоприятные погодные условия. Проведенный статистический анализ скользящих средних с интервалом 5 лет показывают, что происходит заметное снижение урожайности озимой пшеницы в течении последних 13 лет.(рис.1).

Таблица 2

Урожайность озимой пшеницы по Пестречинскому району за 2005-2017гг.

Годы	Площадь га	урожайность ц/га	Валовой сбор ц		
2005	3357	19,5	65461,5		
2006	3260	23,8	77588		
2007	6349	28,5	180946,5		
2008	7383	32,9	242900,7		
2009	6767	35,4	239551,8		
2010	2302	7,3	16804,6		
2011	4826	23,4	112928,4		
2012	968	9,9	9583,2		
2013	3564	24,6	87674,4		
2014	4559	20,1	91635,9		
2015	2309	17,8	41100,2		
2016	3695	27,8	102721		
2017	5512	36,2	199534,4		
Итого	54851		1468431		
Среднее за 12 лет		26,8			

Скользящее среднее

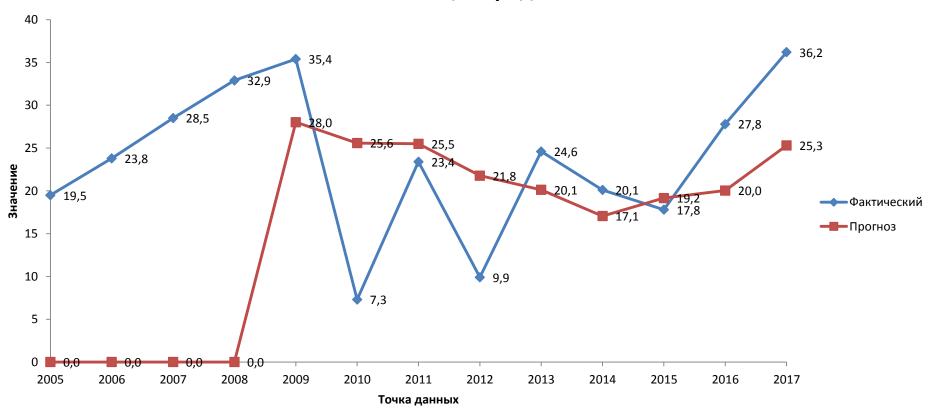


Рис 1. Скользящее среднее урожайности озимой пшеницы

Следующей озимой зерновой культурой в Пестречинском муниципальном районе является озимая рожь, на которую приходится 7% пахотных земель за последние 13 лет. Средняя урожайность в регионе составляет 21. 3 кг/га. Наибольший объем производства, наблюдавшийся в 2009 году, составил 33,3 с/га, в 2010 году при высокой сушке составил не менее 9,5%. 3Т / ha(χ 3). Скользящая средняя с интервалом в 5 лет указывает на незначительное снижение урожайности озимой ржи с 2005 по 2017 год (Рисунок 1).2).

Наиболее экономически эффективной культурой в хозяйстве является яровая пшеница, которая используется в регионе в течение последних 13 лет 17. 3% площади пахотных земель. Средняя урожайность яровой пшеницы за последние 13 лет составила 20. 2С / ha. Урожайность яровой пшеницы была самой высокой в 2009 году 26. 3С / ha. Минимальная урожайность яровой пшеницы в 2010 году составила 8. 8С / ha(Таблица 4). Статистический анализ данных о урожайности яровой пшеницы в Пестречинском муниципальном районе за 5-летний промежуток времени показал, что в период анализа, в период анализа с 2005 по 2017 годы, урожайность яровой пшеницы также значительно снизилась (рис. 3).

Вторым наиболее важным урожаем является ячмень, который в период 2005-2017 гг. в Пестречинском районе выделил большой участок пахотных земель (таблица 5). В 2011 году урожай с гектара составил 32. 1 кг зерна ячменя, полученного в анализируемом году, является самым высоким урожаем ячменя. В 2010 году минимальный объем производства ячменя составил 11 т/га. За период 2005-2017 гг. производство ячменя сократилось, о чем свидетельствуют данные среднего статистического показателя обработки (рис. 4). 13-летняя доходность на скользящих средних от 27. 5С/ha вниз до 21. 8С / ha.

Таблица 3 Урожайность озимой ржи по Пестречинскому району за 2005-2017гг.

Годы	Площадь га	урожайность ц/га	Валовой сбор ц	
2005	6444	16,2	104392,8	
2006	5454	20,4	111261,6	
2007	7327	21,6	158263,2	
2008	3551	25,6	90905,6	
2009	3325	33,3	110722,5	
2010	3657	9,8	35838,6	
2011	6912	26,7	184550,4	
2012	3376	11,6	39161,6	
2013	5673	25	141825	
2014	6884	17,2	118404,8	
2015	7090	17	120530	
2016	6022	27	162594	
2017	3263	27,7	90385,1	
Итого	68978		1468835	
Среднее за 13 лет		21,3		

Рис.2 Скользящее среднее урожайности озимой ржи по Пестречинскому муниципальному району за 2005-2017 гг.

Урожайность яровой пшеницы по Пестречинскому району за 2005-2017гг.

Годы	Площадь га	урожайность ц/га	Валовой сбор ц		
2005	15681	23,5	368503,5		
2006	14989	25,7	385217,3		
2007	11950	20,1	240195		
2008	13841	26,7	369554,7		
2009	16234	26,3	426954,2		
2010	16305	8,8	143484		
2011	11438	26,1	298531,8		
2012	16753	18,7	313281,1		
2013	13648	10,6	144668,8		
2014	9596	16,5	158334		
2015	8321	17,4	144785,4		
2016	6148	15,7	96523,6		
2017	6975	26,1	182047,5		
Итого	161879		3272081		
Среднее за 13 лет		20,2			

Таблица 4

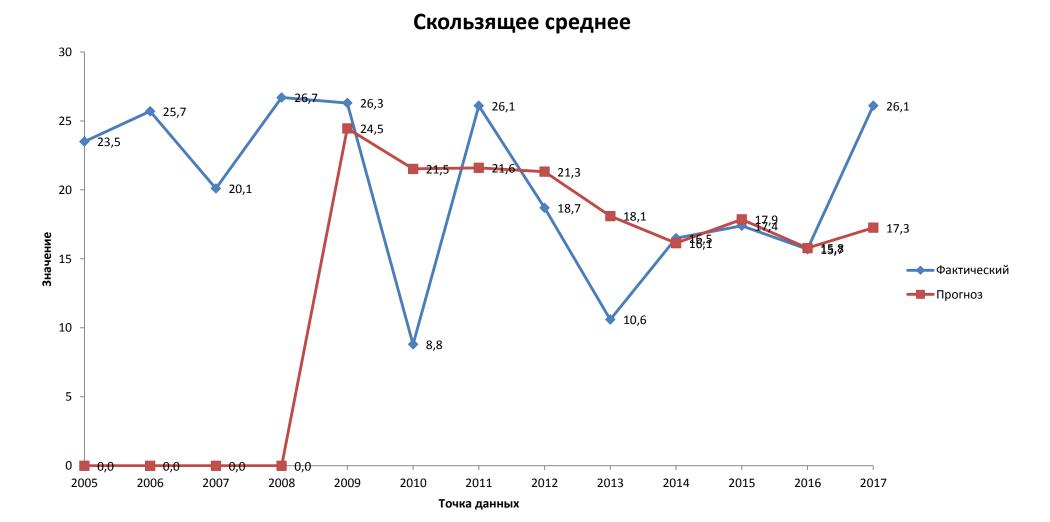


Рис.3 Скользящее среднее урожайности яровой пшеницы по Пестречинскому муниципальному району за 2005-2017 гг.

Таблица 5 Урожайность ячменя по Пестречинскому району за 2005-2017гг.

Годы	Площадь га	урожайность ц/га	Валовой сбор ц		
2005	11853	25,3	299880,9		
2006	12578	26,7	335832,6		
2007	12050	25,2	303660		
2008	11082	28,5	315837		
2009	12030	31,6	380148		
2010	10073	11	110803		
2011	9626	32,1	308994,6		
2012	11331	23,6	267411,6		
2013	11526	16,4	189026,4		
2014	10615	19,6	208054		
2015	12196	22,7	276849,2		
2016	10027	21,3	213575,1		
2017	10302	28,9	297727,8		
Итого	145289		3507800		
Среднее за 13 лет		24,1			

Скользящее среднее

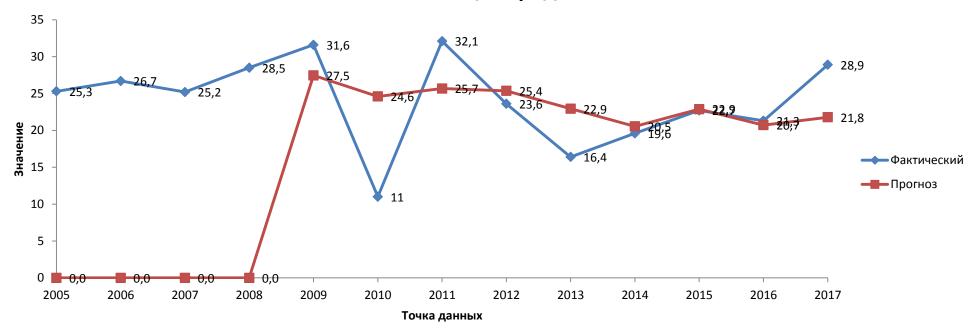


Рис.4 Скользящее среднее урожайности ячменя по Пестречинскому муниципальному району за 2005-2017 гг

В Пестречинском муниципальном районе для культуры овса выделена наименьшая пахотная площадь. В период 2005-2017 годов на овес в среднем было выделено менее 2000 га пахотных земель на 13 лет (Таблица 6). Средняя урожайность овса в период 2005-2017 гг. была самой низкой среди зерновых культур 18. 4с / ha (Таблица 6). Однако, как видно из рисунка 5, в течение 13 лет наблюдается тенденция к увеличению производства среди скользящих.

Таблица 6 Урожайность овса по Пестречинскому району за 2005-2017гг.

Годы	Площадь га	урожайность ц/га	Валовой сбор ц		
2005	2154	13,8	29725,2		
2006	1531	20,5	31385,5		
2007	1221	12,6	15384,6		
2008	1325	22	29150		
2009	1188	29,1	34570,8		
2010	1349	9,8	13220,2		
2011	1363	26,8	36528,4		
2012	1892	17,7	33488,4		
2013	2152	17,3	37229,6		
2014	1931	17,3	33406,3		
2015	2049	16,4	33603,6		
2016	1871	21,6	40413,6		
2017	1674	27,3	45700,2		
Итого	20026		368106,2		
Среднее за 13 лет		18,4			

Рис.5 Скользящее среднее урожайности овса по Пестречинскому муниципальному району за 2005-2017 гг.

3.3 Агрохимическая оценка пашни Пестречинского муниципального района Республики Татарстан

Таблица 7 Агрохимическая характеристика пашни Пестречинского района

Группа обеспеченности	Площади содержанием					
	гумуса		$P_2 O_5$		K ₂ O	
	тыс.га	%	тыс.га	%	тыс.га	%
очень низкая	6,9	8,8	0,7	0,9	0,4	0,5
низкая	61,5	78,5	2,9	3,7	6,2	7,9
средняя	9,6	12,3	15,8	20,2	28,2	36,0
повышенная	0,3	0,4	25,5	28,7	27,0	37,5
высокая	-	-	22,6	28,9	13,3	17,0
очень высокая	-	-	13,8	17,6	3,2	4,1
средневзвешенное содержание	-	2,3%	-	152,9 мг/кг	-	136,6 мг/кг

Из данных агрохимических обследований ФГБУ «ЦАС «Татарский» представленных в таблице 7 видим, что большинство пахотных почв Пестречинского района низко обеспечено гумусом по группировке содержания гумуса, определяемого по методу Тюрина (табл.7). В отличие от гумуса пахотные почвы Пестречинского муниципального района не плохо обеспечены подвижными формами фосфора и калия. Больше половины площадей пашни относятся г группам с повышенным и высоким содержанием подвижного фосфора, а 17,6% пашни относится к группе очень высоким содержанием (табл.7). Средневзвешенное содержание подвижного фосфора составляет 152,9 мг/кг, что соответствует группе высокого содержания. Средневзвешенное содержание калия определяемого по методу Кирсанова составляет 136,6 мг/кг и относится к группе повышенного содержания.

Таблица 8 Содержание доступных элементов питания в почве

Культуры	Элементы	Содержание элементов питания мг/кг	Коэффициент пересчета на кг/га пахотного слоя	Запасы доступных элементов кг/га па- хотного слоя	Коэффициенты использования из почвы	Количество доступных элементов в почве кг/га
	Азот	17,2	3,2	55,0	0,65	35,8
Яровые зерновые	Фосфор	152,9	3,2	489,3	0,07	34,2
	Калий	136,6	3,2	437,1	0,13	56,8
	Азот	17,2	3,2	55,0	0,75	41,3
Озимые зерновые	Фосфор	152,9	3,2	489,3	0,08	39,1
	Калий	136,6	3,2	437,1	0,17	74,3

3.4 Потенциал пашни Пестречинского муниципального района Республики Татарстан

В таблице 8 приведены данные о значительном содержании питательных веществ на единицу площади и расчетах в доступной форме для различных групп сельскохозяйственных культур. Как вы можете видеть, из списка запасов большого количества питательных веществ наиболее важным является таблица, содержащая фосфор. 8). В посещаемой стране большая часть пахотных почв Пестречинского муниципального района содержит калий. Кроме того, на основе рассчитанного количества имеющихся форм большого количества питательных веществ рассчитываются возможные урожайности посевов из-за плодородия почвы.

Из таблицы 9 видно, что азот является основным ограничивающим элементом для определения уровня урожайности сельскохозяйственных культур. Сопоставив данные из таблицы 2-6 с данными из таблицы 8, мы обнаружили, что содержание питательных веществ в почве является недостаточным для достижения урожайности большинства культур. Очевидно, что достижение уровня урожайности невозможно без использования удобрений. Урожайность зерновых культур почти в 1,2-1,7 раза превышает почвенную мощность. С учетом вышеизложенного вполне логично предположить, что урожайность основных культур коррелирует с количеством удобрений.

 Таблица 8

 Потенциал пашни Пестречинского муниципального района по ведущим сельскохозяйственным культурам.

Vyuu Tyynu	Доступно из почвы кг			Вынос на 1 ц продукции кг			Возможный урожай ц/га			Ожидаемый
Культуры	Азот	Фосфор	Калий	Азот	Фосфор	Калий	Азот	Фосфор	Калий	урожай ц/га
Озимая рожь	41,3	39,1	74,3	3	1,2	2,5	13,8	32,6	29,7	13,8
Озимая пшеница	41,3	39,1	74,3	3,7	1,3	2,3	11,2	30,1	32,3	11,2
Яровая пшеница	35,8	34,2	56,8	3,5	1,2	2,5	10,2	28,5	22,7	10,2
Ячмень	35,8	34,2	56,8	2,5	1,1	2,2	14,3	31,1	25,8	14,3
Овес	35,8	34,2	56,8	2,9	1,4	2,9	12,3	24,4	19,6	12,3

3.5 Внесение удобрений за 2005-2017гг.

За последние тринадцать лет ежегодно в Пестречинском муниципальном районе анализировался период возделывания каждого гектара, в среднем 87 на 1 гектар. 9 кг / ДВ. В аккумуляторной батарее в это время насыщенность пахотных земель минеральными удобрениями составляет 59 на 1 га. 8кг / ДВ (таблица 9). Анализ минеральных удобрений проводился в течение года, причем в 2015 году было произведено неравномерно меньше всего 36. 5kg/LW в 1ha,максимум в 2010 92,0 kg / LW 1ha. Как видно из таблицы, в современных удобрениях преобладает азот, кроме 2017 года. В 2017 году соотношение между питательными элементами было равным, так или иначе, ассортимент минеральных удобрений был ограничен азофосом. В целом, уровень внесения минеральных удобрений даже ниже, чем в среднем по стране, и объем таких удобрений явно недостаточен. Насыщенность органического удобрения 2. 4 т/га. Большинство органических удобрений было введено в 2010-4 годах. 9 т / га (таблица 10). Минимальное количество органических удобрений введено в 2015 году, когда насыщенность пахотных земель органическими удобрениями равна 0. 5Т / ha. В соответствии с рекомендациями зонирования по предотвращению истощения и сохранению плодородия почв, насыщенность пахотных земель органическими удобрениями должна составлять 7-8 т/га. В течение года двенадцати лет учебы, не платили за соответствующие удобрения.

Таблица 10 Внесение удобрений за 2005-2017 гг.

Годы	Внесено мине-	Внесено органи-	Внесено с минеральными удобрени-			Внесено с с	Внесено		
	ральных удоб-	ческих удобре-	ями			ниями и минеральными удобрения-			всего д.в.
	рений кг/га	ний т/га				МИ			кг/га
			Азот	Фосфор	Калий	Азот	Фосфор	Калий	
2005	40,3	2,3	22,4	9,1	8,8	33,9	14,8	22,6	71,3
2006	43,9	2,1	25,0	9,5	9,5	29,3	12,1	14,2	55,6
2007	61,2	2,8	35,1	10,4	16,6	49,1	17,4	33,4	99,9
2008	80,2	2	48,4	13,5	18,4	57,4	18,4	28,3	104,1
2009	85,9	4,3	51,8	15,6	18,5	71,0	26,3	39,8	137,1
2010	92,0	4,9	57,6	16,2	18,2	79,8	28,5	42,8	151,1
2011	65,0	3,6	47,5	8,0	9,5	63,7	16,9	27,5	108,1
2012	63,6	2,0	44,8	9,4	9,4	53,7	14,3	19,3	87,3
2013	59,2	1,4	42,0	8,3	8,9	48,1	11,7	15,8	75,6
2014	36,7	2,1	23,2	6,7	6,9	32,7	11,9	17,5	62,1
2015	36,5	0,5	24,8	5,3	6,4	26,8	6,4	8,7	41,9
2016	44,5	1,0	29,0	7,8	7,7	33,5	10,2	12,6	56,3
2017	68,7	2	26,9	20,9	20,9	35,8	25,8	30,8	92,4
среднее	59,8	2,4	36,8	10,8	12,3	47,3	16,5	24,1	87,9

3.6 Корреляционный анализ урожайности и количества внесенных удобрений

Корреляционный анализ урожайности и использования минеральных удобрений не выявил зависимости урожайности зерновых культур от количества пахотных земель с минеральной насыщенностью (таблица 10) и органических удобрений (таблица 11). В предыдущей главе было отмечено, что содержание азота в почвах, используемых на землях Пестречинского района, является ограничивающим фактором урожайности зерновых культур, а анализ показал отсутствие связи между урожайностью основных культур и количеством азота, внесенного в удобрения (таблица 13). Тем не менее, он устанавливает корреляцию между количеством фосфора в почве и продуктивностью зерновых культур. Средняя корреляция между количеством фосфора, введенного в Пестречинском муниципальном районе, и урожайностью озимой пшеницы и овса в озимой пшенице 0. 37. коэффициент корреляции (умеренная по шкале Cedoca)и урожайность овса 0. 31 (умеренная по шкале седока). Слабая корреляция между количеством введенного фосфора и урожайностью озимой ржи, яровой пшеницы и ячменя в Пестречинском муниципальном районе с коэффициентом корреляции для озимой ржи и яровой пшеницы 0,26(слабая шкала Cedoca), ячменя 0,16 (слабая шкала Chedoke).

 Таблица 11.

 Корреляционный анализ урожайности и насыщенности пашни минеральными удобрениями

	Насыщенность Мин.удобрениями	Озимая пшеница	оз.рожь	яр.пшен	ячмень	Овес
Насыщенность Мин.удобрениями	1,00	,				
Озимая пшеница	0,13	1,00				
Оз.рожь	0,19	0,92	1,00			
Яр.пшен	0,05	0,61	0,51	1,00		
Ячмень	0,05	0,65	0,63	0,96	1,00	
Овес	0,20	0,70	0,82	0,67	0,76	1,00

 Таблица 12.

 Корреляционный анализ урожайности и насыщенности пашни органическими удобрениями

	Насыщенность Орг.удобрениями	Озимая пшеница	оз.рожь	яр.пшен	ячмень	Овес
Насыщенность		,				
Орг.удобрениями	1,00					
Озимая пшеница	-0,11	1,00				
Оз.рожь	-0,01	0,92	1,00			
Яр.пшен	0,07	0,61	0,51	1,00		
Ячмень	0,03	0,65	0,63	0,96	1,00	
Овес	0,03	0,70	0,82	0,67	0,76	1,00

Таблица 13.

Корреляционный анализ урожайности и количество внесенного азота

	Азот	Озимая пшеница	оз.рожь	яр.пшен	ячмень	Овес
Азот	1,00					
Озимая пшеница	-0,12	1,00				
Оз.рожь	0,07	0,92	1,00			
Яр.пшен	-0,13	0,61	0,51	1,00		
Ячмень	-0,07	0,65	0,63	0,96	1,00	
Овес	0,09	0,70	0,82	0,67	0,76	1,00

Таблица 14.

Корреляционный анализ урожайности и количество внесенного фосфора

	Фосфор	Озимая пшеница	оз.рожь	яр.пшен	ячмень	Овес
Фосфор	1,00					
Озимая пшеница	0,37	1,00				
Оз.рожь	0,26	0,92	1,00			
Яр.пшен	0,26	0,61	0,51	1,00		
Ячмень	0,16	0,65	0,63	0,96	1,00	
Овес	0,31	0,70	0,82	0,67	0,76	1,00

Корреляционный анализ урожайности и количество внесенного калия

	Калий	Озимая пшеница	оз.рожь	яр.пшен	ячмень	Овес
Калий	1,00					
Озимая пшеница	0,44	1,00				
Оз.рожь	0,30	0,92	1,00			
Яр.пшен	0,28	0,61	0,51	1,00		
Ячмень	0,21	0,65	0,63	0,96	1,00	
Овес	0,23	0,70	0,82	0,67	0,76	1,00

4. Выводы

Анализ динамики урожайности ведущих сельскохозяйственных культур, а также количества внесенных удобрений по Пестречинскому муниципальному району за период с2005 года по 2017 год позволил сделать следующие выводы.

- 1. Пахотные почвы Пестречинского муниципального района очень бедны по одному из главных показателей потенциального плодородия гумусом. Средневзвешенное содержание гумуса по району составляет 2,3%.
- 2. Основным лимитирующим макроэлементом определяющим уровень урожайности ведущих сельскохозяйственных культур по Пестречинскому району является азот
- 3. Установлена средняя корреляционная зависимость между количеством внесенного фосфора и урожайностью озимой пшеницы коэффициент корреляции 0,37(умеренная по шкале Чеддока).
- 4. Установлена средняя корреляционная зависимость между количеством внесенного фосфора и урожайностью овса коэффициент корреляции 0,31(умеренная по шкале Чеддока).