МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Казанский государственный аграрный университет» (ФГБОУ ВО Казанский ГАУ)

Институт механизации и технического сервиса Кафедра физики и математики

УТВЕРЖДАЮ
Проректор, по учебновоспитательной работе и молодежной политике, доцент А.В. Дмитриев

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

«Физика»

(Оценочные средства и методические материалы)

приложение к рабочей программе дисциплины

Направление подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов

> Направленность (профиль) подготовки **Автомобили и автомобильное хозяйство**

> > Форма обучения **очная**, заочная

Казань - 2023

Составитель: <u>доцент, к.ф-м.н.</u> Должность, ученая степень, ученое звание	Подпись	Рахматуллина Резида Гайфулловна Ф.И.О.
Оценочные средства обсуждены и «24» апреля 2023 года (протокол М		кафедры физики и математики
Заведующий кафедрой: д.т.н., профессор Должность, ученая степень, ученое звание	Подпись	<u>Ибятов Равиль Ибрагимович</u> Ф.И.О.
Рассмотрены и одобрены на за технического сервиса «27» апреля		комиссии Института механизации и 8)
Председатель методической комис доцент, к.т.н. Должность, ученая степень, ученое звание	Подпись	Зиннатуллина Алсу Наилевна Ф.И.О.
Согласовано: <u>Директор</u>	Волий	Медведев Владимир Михайлович Ф.И.О.

Протокол ученого совета института № 9 от «11» мая 2023 года

1. ПЕРЕЧЕНЬ КОМПЕТЕНЦИЙ С УКАЗАНИЕМ ЭТАПОВ ИХ ФОРМИРОВАНИЯ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения ОПОП по направлению подготовки 23.03.03 Эксплуатация транспортно-технологических машин и комплексов, обучающийся должен овладеть следующими результатами обучения по дисциплине «Физика»:

Таблица 1.1 – Требования к результатам освоения дисциплины

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Перечень планируемых результатов обучения по дисциплине
ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности	ОПК-1.1. Демонстрирует знание основных законов математических, естественнонаучных и общепрофессиональных дисциплин, необходимых для решения типовых задач для обеспечения эффективной эксплуатации атс.	Знать: теоретические основы фундаментальных законов физики, в т.ч. физические основы механики, молекулярной физики и термодинамики, электричества и магнетизма, оптики, атомной, ядерной физики. Основные методы проведения экспериментальных исследований в области физики. Обработку полученных данных опираясь на методики технологических и инженерных исследований. Уметь: демонстрировать знания фундаментальных законов физики для решения стандартных задач по всем разделам физики. Анализировать варианты решения практических, исследовательских задач опираясь на знания физики, математики, математического моделирования, электротехники и электроники. Владеть: навыками работы с контрольно-измерительной аппаратурой для измерения физико-механических, термодинамических, электромагнитных и оптических свойств веществ.
	ОПК-1.2. Применяет информационно — коммуникационные технологии в решении типовых задач в области обеспечения эффективной эксплуатации атс.	Знать: основные определения и термины, методикииспользуемые в компьютеризированных средствах решения прикладных задач. Использовать информационные технологии при поиске необходимой информации. Уметь: использовать и объяснить современные информационные технологии в процессе решения прикладных задач с использованием основных методов физики. Владеть: основными методами компьютерного моделирования физических процессов, компьютерной графикой и подходами к решению прикладных задач. На основе знаний и умений, приобретённых в процессе изучения физических, электромагнитных, оптико-физических явлений, навыками обработки экспериментальных данных и оценки точности измерений.

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Таблица 2.1 – Показатели и критерии определения уровня сформированности компетенций (интегрированная оценка уровня сформированности компетенций)

Код и наименование		Оценка уровня сформированности			
индикатора	Планируемые				
достижения	результаты обучения	неудовлетворительно	удовлетворительно	хорошо	онрипто
компетенции					
ОПК-1.1.	Знать: теоретические	Обучающийся, знает	Обучающийся, знает	Обучающийся, знает	Обучающийся, знает в
Демонстрирует знание	основы	теоретическую и	теоретическую и	теоретическую и	полном объеме
основных законов	фундаментальных	практическую часть	практическую часть	практическую часть	теоретическую и
математических,	законов физики, в т.ч.	всех разделов физики	всех разделов физики в	всех разделов физики с	практическую часть
естественнонаучных и	физические основы	ниже минимальных	неполном объеме,	незначительными	всех разделов физики.
общепрофессиональны	механики,	требований и имели	однако это не	пробелами.	
х дисциплин,	молекулярной физики	грубые ошибки.	препятствует усвоению		при выполнении
необходимых для	и термодинамики,		последующего	при выполнении	лабораторных работ,
решения типовых задач	электричества и	при выполнении	материала.	лабораторных работ,	обучающийся, владеет
для обеспечения	магнетизма, оптики,	лабораторных работ,		обучающийся, владеет	навыками
эффективной	атомной, ядерной	обучающийся, не	при выполнении	навыками	экспериментальных
эксплуатации атс.	физики.	владеет опытом	лабораторных работ,	экспериментальных	исследований и умеет
	Основные методы	экспериментальных	обучающийся, владеет	исследований и умеет	правильно оформлять
	проведения	исследований и не	опытом	правильно оформлять	отчёты о выполненной
	экспериментальных	умеет правильно	экспериментальных	отчёты о выполненной	работе и безошибочно
	исследований в	оформлять отчёты о	исследований и умеет	работе и с	проводить
	области физики.	выполненной работе не	правильно оформлять	незначительными	математические
	Обработку полученных	умеет проводить	отчёты о выполненной	ошибками проводить	расчёты с заданиями
	данных опираясь на	математические	работе	математические	по выполнению
	методики	расчёты с заданиями	многочисленными	расчёты с заданиями	лабораторной работы.
	технологических и	по выполнению	негрубыми ошибками,	по выполнению	
	инженерных	лабораторной работы.	проводить	лабораторной работы	
	исследований.		математические		
			расчёты с заданиями		
			по выполнению		
			лабораторной работы.		

	Уметь: демонстрировать знания фундаментальных законов физики для решения стандартных задач по всем разделам физики. Анализировать варианты решения практических, исследовательских задач опираясь на знания физики, математики, математического моделирования, электроники.	Не умеет изложить полученные знания в устной, письменной или графической форме или имели грубые ошибки.	Умеет в не полном объеме изложить полученные знания в устной, письменной или графической форме с негрубыми ошибками.	Умеет в полном объеме изложить полученные знания в устной, письменной или графической форме. в полном объеме, но с некоторыми недочетами.	умеет в полном объеме изложить полученные знания в устной, письменной или графической форме.
	Владеть: навыками работы с контрольно- измерительной аппаратурой для измерения физикомеханических, термодинамических, электромагнитных и оптических свойств веществ.	Не владеет разными методами решения физических задач по темам, которые предусмотрены в рабочей программе. стандартные задачи решены с грубыми ошибками.	Владеет разными методами решения физических задач по темам, которые предусмотрены в рабочей программе. стандартные задачи решены с некоторыми недочетами.	Свободно владеет разными методами решения физических задач по темам, которые предусмотрены в рабочей программе. задачи решены с некоторыми недочетами в полном объеме.	Свободно владеет разными методами решения физических задач по темам, которые предусмотрены в рабочей программе. задачи решены без ошибок в полном объеме.
ОПК-1.2. Применяет информационно – коммуникационные технологии в решении	Знать: основные определения и термины, методикииспользуемые	Обучающийся, знает основные определения и термины, методики используемые в	Основные определения и термины, методики используемые в компьютеризированны	Обучающийся, знает основные определения и термины, методики используемые в	Обучающийся, знает в полном объеме основные определения и термины, методики

типовых задач в	В	компьютеризированны	х средствах решения	компьютеризированны	используемые в
области обеспечения	компьютеризированны	х средствах решения	прикладных задач в	х средствах решения	компьютеризированны
эффективной	х средствах решения	прикладных задач	неполном объеме,	прикладных задач с	х средствах решения
эксплуатации атс.	прикладных задач.	ниже минимальных	однако это не	некоторыми	прикладных задач.
Skennyuruqiin ure.	Использовать	требований и имеют	препятствует усвоению	незначительными	прикладных зада 1.
	информационные	грубые ошибки.	последующего	недочетами.	
	технологии при поиске	труовае ошноки.	материала.	подолетами.	
	необходимой		материала.		
	информации.				
	ттформидии.				
	Уметь: использовать и	Не умеет использовать	Умеет не в полном	Умеет в полном объеме	Умеет в полном
	объяснить	и объяснить	объеме с негрубыми	с некоторыми	использовать и
	современные	современные	ошибками,	недочетами	объяснить
	информационные	информационные	использовать и	использовать и	современные
	технологии в процессе	технологии в процессе	объяснить	объяснить	информационные
	решения прикладных	решения	современные	современные	технологии в процессе
	задач с	профессиональных	информационные	информационные	решения
	использованием	задач с	технологии в процессе	технологии в процессе	профессиональных
	основных методов	использованием	решения	решения	задач с
	физики.	основных методов	профессиональных	профессиональных	использованием
		физики.	задач с	задач с	основных методов
			использованием	использованием	физики.
			основных методов	основных методов	
			физики.	физики.	
	Владеть: основными	Не владеет разными	Владеет разными	Свободно владеет	Свободно владеет
	методами	методами решения	методами решения	разными методами	разными методами
	компьютерного	физических задач по	физических задач по	решения физических	решения физических
	моделирования	темам, которые	темам, которые	задач по темам,	задач по темам,
	физических процессов,	предусмотрены в	предусмотрены в	которые	которые
	компьютерной	рабочей программе.	рабочей программе.	предусмотрены в	предусмотрены в
	графикой и подходами	стандартные задачи	стандартные задачи	рабочей программе.	рабочей программе.
	к решению	решены с грубыми	решены с некоторыми	задачи решены с	задачи решены без
	прикладных задач. На	ошибками.	недочетами.	некоторыми	ошибок в полном
	основе знаний и			недочетами в полном	объеме.
	умений,			объеме.	
	приобретённых в				

процессе изучения	
физических,	
электромагнитных,	
оптико-физических	
явлений, навыками	
обработки	
экспериментальных	
данных и оценки	
точности измерений.	

Описание шкалы оценивания

- 1. Оценка «неудовлетворительно» ставится студенту, не овладевшему ни одним из элементов компетенции, т.е. обнаружившему существенные пробелы в знании основного программного материала по дисциплине, допустившему принципиальные ошибки при применении теоретических знаний, которые не позволяют ему продолжить обучение или приступить к практической деятельности без дополнительной подготовки по данной дисциплине.
- 2. Оценка «удовлетворительно» ставится студенту, овладевшему элементами компетенции «знать», т.е. проявившему знания основного программного материала по дисциплине в объеме, необходимом для последующего обучения и предстоящей практической деятельности, знакомому с основной рекомендованной литературой, допустившему неточности в ответе на экзамене, но в основном обладающему необходимыми знаниями для их устранения при корректировке со стороны экзаменатора.
- 3. Оценка «хорошо» ставится студенту, овладевшему элементами компетенции «знать» и «уметь», проявившему полное знание программного материала по дисциплине, освоившему основную рекомендованную литературу, обнаружившему стабильный характер знаний и умений и способному к их самостоятельному применению и обновлению в ходе последующего обучения и практической деятельности.
- 4. Оценка «отлично» ставится студенту, овладевшему элементами компетенции «знать», «уметь» и «владеть», проявившему всесторонние и глубокие знания программного материала по дисциплине, освоившему основную и дополнительную литературу, обнаружившему творческие способности в понимании, изложении и практическом использовании усвоенных знаний.
 - 5. Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».
 - 6. Оценка «не зачтено» соответствует критерию оценки «неудовлетворительно».

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Таблица 3.1 – Типовые контрольные задания соотнесенные с индикаторами достижения компетенций

Индикатор достижения компетенции	№№ заданий (вопросов, билетов, тестов и пр.)			
	для оценки результатов обучения по			
	соотнесенному индикатору достижения			
	компетенции			
ОПК-1.1. Демонстрирует знание основных	Оценочные материалы открытого типа			
законов математических, естественнонаучных и общепрофессиональных дисциплин, необходимых для решения типовых задач для	(вопросы 1-16). Оценочные вопросы закрытого типа (вопросы 1-7).			
обеспечения эффективной эксплуатации ATC. ОПК-1.2. Применяет информационно –	Оценочные материалы открытого типа			
коммуникационные технологии в решении типовых задач в области обеспечения эффективной эксплуатации АТС.	(вопросы 17-45). Оценочные вопросы закрытого типа (вопросы 8-15).			

3.1. Оценочные материалы открытого типа

- 1. 1. Механика. Разделы механики.
- 2. Поступательное движение. Кинематические характеристики поступательного движения: система отсчета, радиус-вектор, траектория, путь, перемещение.
- 3. Кинематические характеристики поступательного движения: мгновенная и средняя скорость, мгновенное и среднее ускорение, тангенциальное, нормальное и полное ускорение.

- 4. Кинематические характеристики вращательного движения: мгновенная и средняя угловая скорость, мгновенное и среднее угловое ускорение. Связь линейных и угловых величин.
 - 5. Первый закон Ньютона. Второй закон Ньютона. Третий закон. Силы в механике.
- 6. Импульс тела. Закон сохранения импульса. Кинетическая энергия Потенциальная энергия.
 - 7. Момент инерции твердого тела. Теорема Штейнера.
 - 8. Второй закон Ньютона для вращательного движения.
- 9. Представление о механической энергии. Кинетическая, потенциальная энергия. Работа силы. Закон сохранения механической энергии.
 - 10. Закон сохранения импульса. Закон сохранения момента импульса.
 - 11. Определение идеального газа. Сформулируйте основные положения МКТ газов.
 - 12. Запишите основное уравнение МКТ идеального газа.
- 13. Определите связь между средней кинетической энергией поступательного движения молекул газа и абсолютной температурой.
- 14. Получите формулу для определения среднего квадрата скорости и средней квадратичной скорости движения молекул газа.
- 15. Запишите уравнение состояния идеального газа (уравнение Менделеева-Клапейрона).
- 16. Дайте определение изопроцесса. Сформулируйте и запишите закон Бойля-Мариотта. Нарисуйте график изотермического процесса в координатах (p,V), (p,T), (V,T).
- 17. Дайте определение изобарического (изобарного) процесса. Сформулируйте и запишите закон Гей-Люссака. Нарисуйте график изобарического процесса в координатах (V,T), (p,V), (p,T).
- 18. Дайте определение изохорического (изохорного) процесса. Сформулируйте и запишите закон Шарля. Нарисуйте график изохорического процесса в координатах (p,T), (p,V), (V,T).
- 19. Каким уравнением описывается адиабатический процесс? Изобразите адиабату в координатах p-V. Какой процесс называется политропным?
- 20. Дайте определения теплоемкости тела, удельной и молярной теплоемкости вещества.
 - 21. Что понимают под внутренней энергией одноатомного идеального газа.
- 22. Дайте определения процесса теплообмена (теплопередачи). Назовите виды теплопередачи. Что называют количеством теплоты? Назовите единицу количества теплоты в системе Си.
- 23. Сформулируйте и запишите формулы в двух вариантах первый закон термодинамики.
- 24. Число степеней свободы молекул идеального газа. Работа и внутренняя энергия идеального газа.
- 25. В чем сущность явлений переноса? Каковы они и при каких условиях возникают?
- 26. Энтропия, термодинамическое тождество. Энтропия и термодинамическая вероятность. Физический смысл энтропии.
- 27. Перечислите четыре типа тепловых двигателей. Напишите выражение для расчета КПД теплового двигателя.
- 28. Электрический заряд. Закон сохранения электрического заряда. Закон взаимодействия точечных зарядов. Единицы заряда.
- 29. Что называется электрическим током? Каково его направление? Определение силы тока. Какой ток называется постоянным?
- 30. Работа электрического поля при перемещении электрического заряда. Потенциальный характер электрического поля.

- 31. Потенциал и разность потенциалов электростатического поля. Связь потенциала и напряженности поля. Эквипотенциальные поверхности.
- 32. Электроемкость проводников. Электроемкость плоского конденсатора и уединенной сферы. Конденсаторы. Единицы электроемкости.
- 33. неподвижных точечных зарядов, заряженного конденсатора, электрического поля.
- 34. Постоянный электрический ток. Сила и плотность тока. Законы Ома и Джоуля-Ленца. Дифференциальная форма закона Ома и Джоуля-Ленца. Закон Ома для неоднородного участка.
- 35. Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Закон Био-Савара-Лапласа и его практическое применение.
- 36. Действие магнитного поля на отрезок проводника с током. Закон Ампера. Взаимодействие параллельных токов. Единица силы тока.
- 37. Явление электромагнитной индукции. Электродвижущая сила индукции. Законы Фарадея и Ленца.
- 38. Явление самоиндукции. Индуктивность тонкого соленоида. Токи при размыкании и замыкании цепи. Взаимная индукция. Энергия магнитного поля.
- 39. Намагничивание вещества. Магнитные характеристики вещества: вектор намагничивания, магнитная проницаемость, магнитная восприимчивость, напряженность магнитного поля.
- 40. Законы отражения и преломления света. Закон Снеллиуса. Полное внутреннее отражение света. Геометрическая оптика.
- 41. Интерференция света. Интерференция света и когерентность. Интерференция света в тонких пленках. Интерферометры. Просветление оптики.
- 42. Дифракция света. Дифракционная решетка. Дифракция рентгеновских лучей. Поляризация света. Закон Малюса. Закон Брюстера. Дисперсия света. Нормальная и аномальная дисперсии.
 - 43. Фотоэффект. Основные законы фотоэффекта. Уравнение Эйнштейна.
- 44. Состав и строение атомного ядра. Нуклоны, заряд, размер и масса атомного ядра. Массовое и зарядовое числа.
- 45. Природа ядерных сил. Дефект массы и энергия связи ядер. Радиоактивность. Виды радиоактивного распада и излучений (изменения атомного ядра).

3.2. Оценочные материалы закрытого типа

1. Какая из формулировок выражает закон сохранения импульса:

- А) Импульс замкнутой системы не изменяется с течением времени;
- Б) Геометрическая сумма импульсов тел, входящих в замкнутую систему, есть величина постоянная;
- В) В замкнутой системе механическая энергия сохраняется, если действуют только консервативные силы;
- Γ) Замкнутая (изолированная) система это механическая система тел, на которую не действуют внешние силы;
- Д) Внешние силы это силы, с которыми на тела механической системы действуют тела, не входящие в данную систему.

2. Мощность в механике это:

- А) Векторная величина, равная произведению вектора силы на вектор скорости;
- Б) Скалярная величина, равная работе, выполненной в единицу времени;
- В) Скалярное произведение работы на время, за которое она выполнена;
- Г) Скалярное произведение вектора силы на вектор перемещения;
- Д) Скалярная величина, равная произведению силы на перемещение и на косинус угла между ними.

3. Закон распределения Максвелла характеризует:

- А) равномерное распределение энергии по степеням свободы;
- Б) уравнение состояния идеального газа;
- В) распределение молекул по скоростям;
- Г) распределение молекул в потенциальном силовом поле.

4. Закон распределения Больцмана характеризует:

- А) равномерное распределение энергии по степеням свободы;
- Б) уравнение состояния идеального газа;
- В) распределение молекул по скоростям;
- Г) распределение молекул в потенциальном силовом поле.

5. Что называется электрическим током?

- А) Хаотическое движение заряженных частиц;
- Б) Направленное движение заряженных частиц;
- В) Направленное движение атомов и молекул;
- Г) Хаотическое движение ионов.

6. При сжатии идеального газа его объем уменьшается в 2 раза, а температура увеличивается в 2 раза. Как изменится при этом давление газа?

- А) увеличится в 2 раза;
- Б) уменьшится в 2 раза;
- В) увеличится в 4 раза;
- Γ) уменьшится в 4 раза;
- Д) не изменится.

7. Адиабатическим процессом называется процесс, протекающий:

- А) при постоянной температуре;
- Б) при постоянном давлении;
- В) без обмена энергией с окружающей средой;
- Г) при постоянном объеме;
- Д) нет правильного ответа.

8. Какое явление называется электромагнитной индукцией?

- А) Появление магнитного поля при протекании тока по цепи;
- Б) Вращение контура с током в магнитном поле;
- В) Действие магнитного поля на проводник с током;
- Г) Явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего этот контур.

9. Какое явление называется самоиндукцией?

- А) Явление возникновения индукционного тока в цепи при протекании в ней переменного тока;
 - Б) Появление магнитного поля при протекании тока по цепи;
 - В) Вращение контура с током в магнитном поле;
 - Г) Действие магнитного поля на проводник с током.

10. Какое из нижеприведенных утверждений является правилом Ленца для направления индукционного тока?

- А) Индукционный ток имеет такое направление, что его магнитной поле препятствует изменению того магнитного потока, которое его создало;
- Б) Индукционный ток направлен противоположно направлению электрического тока, который его создал;
 - В) Направление индукционного тока определяется по правилу буравчика;
 - Г) Направление индукционного тока определяется по правилу левой руки.

11. Какие волны удовлетворяют условию когерентности?

- А) волны, имеющие одинаковые фазы и постоянную разность длин волн;
- Б) волны, имеющие одинаковую длину волны и постоянную разность фаз;
- В) волны, испускаемые одним источником;

Г) волны, имеющие различную длину и постоянную фазу.

12. Какие волны могут интерферировать?

- А) волны от одного источника света;
- Б) волны, распространяющиеся в одной плоскости;
- В) волны, имеющие одинаковую энергию;
- Г) волны одинаковой длины и постоянной разности фаз.

13. При какой разности хода возникает усиление колебаний при интерференции?

- А) при разности хода, равной четному числу длин полуволн;
- Б) при разности хода меньше длины волны;
- В) при разности хода, равной целому числу фаз;
- Γ) при разности хода, равной нечетному числу длин полуволн.

14. Ядро атомов у изотопов одного и того же элемента содержат?

- А) одинаковое число нейтронов, но различное число протонов;
- Б) одинаковое число протонов, но различное число нейтронов;
- В) количество нейтронов равно количеству протонов;
- Г) одинаковое число электронов;
- Д) различное число электронов.

15. Какой вид электромагнитных излучений имеет наименьшую длину волны?

- А) радиоволны;
- Б) инфракрасное излучение;
- В) ультрафиолетовое излучение;
- Г) рентгеновское излучение;
- Д) все виды электромагнитных излучений.

4. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Лекции оцениваются по посещаемости, активности, умению выделить главную мысль.

Лабораторные занятия оцениваются по самостоятельности выполнения работы, грамотности в оформлении, правильности выполнения.

Самостоятельная работа оценивается по качеству и количеству выполненных домашних или контрольных работ, грамотности в оформлении, правильности выполнения.

Промежуточная аттестация проводится в форме зачета и экзамена.

Для получения зачета и экзамена студент очной формы обучения должен в течение семестра активно посещать лекции и принимать участие в обсуждении вопросов касающихся изучаемой темы, выполнить и защитить отчеты по практическим занятиям.

Для получения зачета и экзамена студент заочной формы обучения должен написать контрольную работу, активно посещать лекции и принимать участие в обсуждении вопросов касающихся изучаемой темы, выполнить и защитить отчеты по практическим занятиям.

Критерии оценки зачета и экзамена могут быть получены в тестовой форме: количество баллов или удовлетворительно, хорошо, отлично. Для получения соответствующей оценки на зачете и экзамене по курсу используется накопительная система бально-рейтинговой работы студентов. Итоговая оценка складывается из суммы баллов или оценок, полученных по всем разделам курса и суммы баллов полученной на зачете и экзамене.

Оценка «зачтено» соответствует критериям оценок от «отлично» до «удовлетворительно».

Оценка «не зачтено» соответствует критерию оценки «не удовлетворительно».

Количество баллов и оценка неудовлетворительно, удовлетворительно, хорошо, отлично определяются программными средствами по количеству правильных ответов к количеству случайно выбранных вопросов.

Критерии оценивания компетенций следующие:

1. Ответы имеют полные решения (с правильным ответом). Их содержание свидетельствует об уверенных знаниях обучающегося и о его умении решать профессиональные задачи, оценивается в 5 баллов (отлично);

- 2. Более 75 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует о достаточных знаниях обучающегося и его умении решать профессиональные задачи 4 балла (хорошо);
- 3. Не менее 50 % ответов имеют полные решения (с правильным ответом). Их содержание свидетельствует об удовлетворительных знаниях обучающегося и о его ограниченном умении решать профессиональные задачи, соответствующие его будущей квалификации 3 балла (удовлетворительно);
- 4. Менее 50 % ответов имеют решения с правильным ответом. Их содержание свидетельствует о слабых знаниях обучающегося и о его не умении решать профессиональные задачи 2 балла (неудовлетворительно).