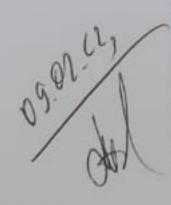
Министерство Сельского Хозяйства Российской Федерации Казанский Государственный Аграрный Университет


0222

Кафедра общеинженерных дисциплин

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовому проекту по ТММ

Выполнил: студент Группы Б202-06у Гатауллин А.М. Проверил: доцент Гургенидзе З.Д.

Казань – 2024

$$a_{n} = \omega_{1}^{2} \cdot l_{o,n} = 45^{2} \cdot 0.165 = 334M/c^{2};$$

$$k_{u} = 4M/c^{2} \cdot AM;$$

$$z_{d} = \frac{a_{d}}{k_{u}} = \frac{334}{4} = 83.5MM;$$

$$z_{d} = \frac{a_{d}}{k_{u}} = \frac{334}{4} = 83.5MM;$$

$$\frac{a_{B}}{k_{u}} + \frac{a_{B}}{k_{u}} = \frac{334}{4} = 83.5MM;$$

$$\frac{a_{B}}{k_{u}} = \frac{334}{k_{u}} = 83.5MM;$$

$$\frac{a_{B}}{k_{u}} = \frac{334}{k_{u}} = 83.5MM;$$

$$a_{B}^{m} = \frac{a_{B}}{k_{u}} = \frac{334}{4} = 83.5MK;$$

$$a_{B}^{m} = \frac{a_{B}}{k_{u}} = \frac{3.5}{4} = \frac{3.5}{6} = 83.5MK;$$

$$a_{B}^{m} = \frac{a_{B}}{k_{u}} = \frac{4.52^{2}}{0.56} = 36.5M/c^{2};$$

$$a_{B}^{m} = \frac{V_{B}}{k_{u}} = \frac{4.52^{2}}{0.56} = 36.5M/c^{2};$$

$$a_{B}^{m} = \frac{V_{B}}{k_{u}} = \frac{4.52^{2}}{4} = 9.1MM;$$

$$a_{B}^{m} = \frac{V_{B}}{k_{u}} = \frac{9.13^{2}}{4} = 9.1MM;$$

$$a_{B}^{m} = \frac{V_{B}}{k_{u}} = \frac{166.7}{0.5} = 166.7M/c^{2};$$

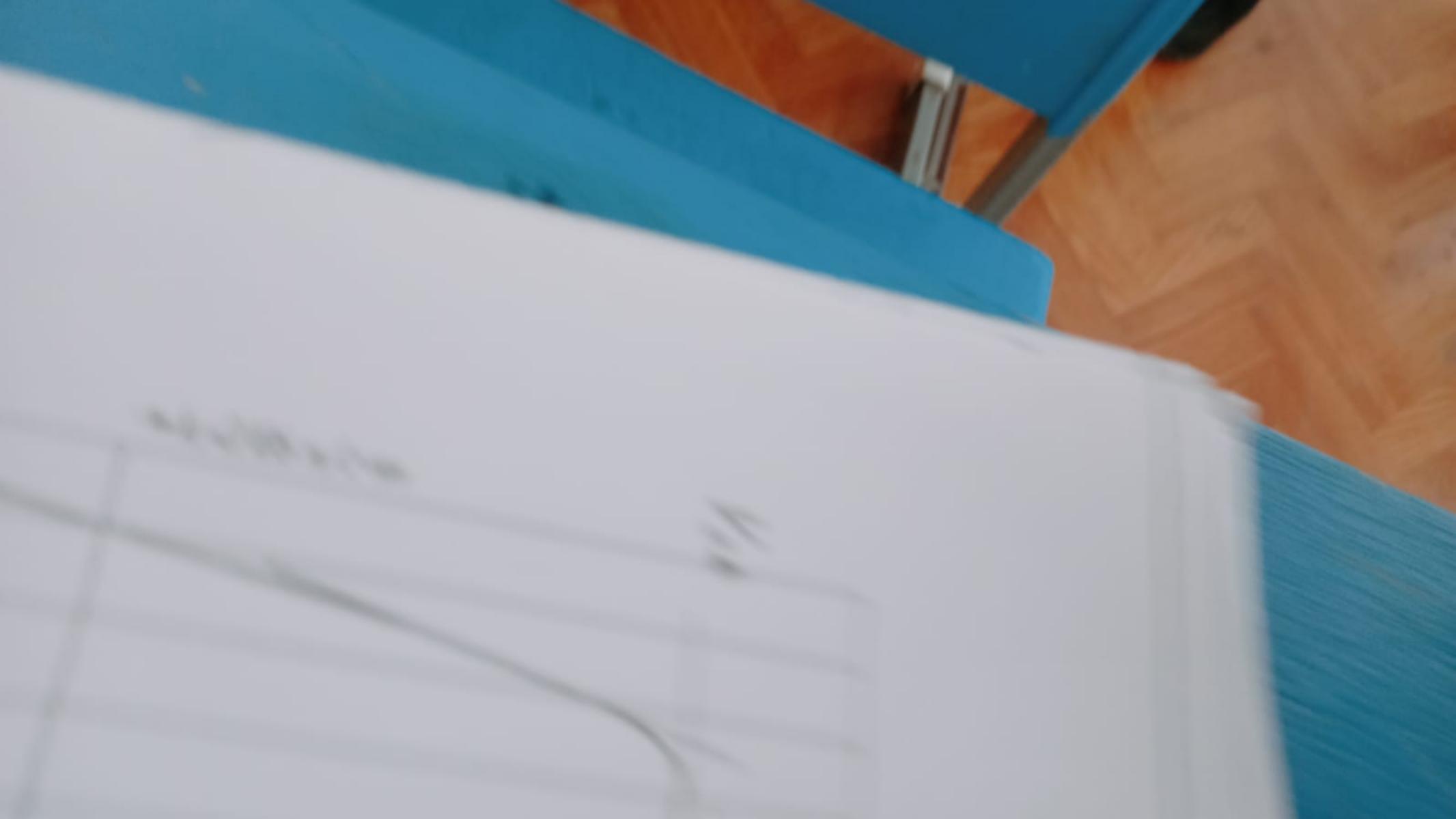
$$a_{B}^{m} = z_{B}^{m} \cdot k_{u} = 135.4 = 540M/c^{2};$$

$$a_{B}^{m} = z_{B}^{m} \cdot k_{u} = 135.4 = 540M/c^{2};$$

$$a_{B}^{m} = z_{B}^{m} \cdot k_{u} = 51.8 \cdot 1 = 207.2M/c^{2};$$

$$\begin{split} \frac{a_{S_2A}}{a_{BA}} &= \frac{AS_2}{AB} \left[+ k_o; \frac{a'S_2}{a'b} = \frac{AS_2}{AB}; a'S_2 = \frac{AS_2}{AB}; a'S_2 = \frac{AS_2}{AB} \cdot a'b' = \frac{0.3}{1.0} \cdot 135 = 40.5 \text{ MM}; \\ a_{S_2A} &= z_{S_2A} \cdot k_o = 40.5 \cdot 4 = 162 \text{ M/} \text{ c}^2; \\ a_{S_2} &= z_{S_2} \cdot k_o = 43.1 \cdot 4 = 172.4 \text{ M/} \text{ c}^2; \\ \frac{a_{DA}}{a_{BA}} &= \frac{AD}{AB} \left[+ k_o; \frac{a'd'}{a'b'} = \frac{AD}{AB}; a'd' = \frac{AD}{AB} \cdot a'b' = \frac{62.4}{112} \cdot 135 = 75.2 \text{ MM}; \\ a_{DA} &= z_{DA} \cdot k_o = 9.4 = 300.8 \text{ M/} \text{ c}^2; \\ a_{O} &= z_D \cdot k_o = 9.4 = 36 \text{ M/} \text{ c}^2. \end{split}$$

$$\begin{aligned} \varepsilon_2 &= \frac{a_{BA}^r}{l_{BA}} = \frac{538.8}{0.56} = 962c^{-2}, \\ \varepsilon_3 &= \frac{a_B^r}{l_{BC}} = \frac{122.8}{0.5} = 245.6c^{-2}, \\ \frac{a_{S_3}}{a_B} &= \frac{S_3C}{BC} \ 1 &\pm k_a; \quad \frac{o's_3'}{o'b'} = \frac{S_3C}{BC}; \\ a_{S_3} &= o's_3, k_a = 10.4 + 4 = 41.6M/c^2. \end{aligned}$$


/ /

~

1

1

 $\frac{a_{L}}{a_{L}} = \frac{a_{D}}{a_{D}} + \frac{a_{ED}}{a_{ED}} + \frac{a_{enp}}{a_{enp}};$ // nn ///DB

$$D_{2} = \frac{\Gamma_{0,1}}{I_{0,1}} = \frac{4.52}{0.56} = 8.07e^{-1}.$$

$$D_{3} = \frac{\Gamma_{0}}{I_{0,2}} = \frac{9.13}{0.5} = 18.26e^{-1}.$$

$$\Gamma_{s_1} = l_{s_2c} \cdot \omega_s = 0.1 \cdot 18.26 = 1.82.a/c$$

od $= \frac{\Gamma_{s_2}}{k_2} = \frac{1.82}{0.106} = 17.3.a.a.$

$$\overline{V_{g}} = \overline{V_{g}} + \overline{V_{ggg}}$$

$$V_{ggg} = V_{gg} + \overline{V_{gggg}}$$

$$V_{ggg} = k_{gg} \cdot ed = 0.106 \cdot 73.2 = 7.76.4/c;$$

$$V_{gg} = k_{gg} \cdot ee = 0.106 \cdot 31.9 = 3.38.4/c;$$

$$V_{gg} = V_{gg} = 3.38.4/c;$$

Значения линейных и угловых скоростей для остальных положений точек и звеньев приведены в таблице 1.1. Таблица 1.1 - Значения линейных и угловых скоростей.

Скорости					Ποπο	кення	Положения механизма	IH3M3				
точек и звеньев	1	01	ю	4	5	6	7	~	6	10	11	12
VA.M/C	7,43	7,43	7,43	7,43	7,43	7,43	7,43	7,43	7,43	7,43	7,43	7,43
ω_1, c^{-1}	45,0	45,0	45,0	45,0	45,0	45,0	45,0	45,0	45,0	45,0	45,0	45,0
Vna.M/C	5.89	2,38	0,34	2,92	5,29	7,02	7,36	5,71	1,60	4,52	9,14	8,68
V _{w.M} /c	2,93	6,43	7,45	6.71	4,73	2,14	0,58	3,46	6,57	9,13	8,15	2,66
VS.A.M/C	1.76	0.72	0,11	0,86	1,60	2,11	2,21	1,71	0,49	1,35	2,74	2,61
Vs.M/c	5.81	7,06	7.43	7,09	6,28	5,45	5,24	5,96	7,15	7,70	6,41	5,00
Vnum/c	1.64	0.79	0.16	1,73	3,87	5,71	6,14	4,63	1,13	2,52	3,73	2,66
Parmile	5.94	7.02	7.45	6,88	5,08	2,57	1,40	3,89	6,80	8,12	6,30	4,95
0c ⁻¹	10.5	4.25	0.61	5,20	9,45	12,5	13,1	10,2	2,86	8,06	16,3	15,5
0,.c ⁻¹	5.87		13.3	13,4	9,47	4,28	1,15	6,91	13,1	18,2	16,3	5,33
V. M/C	0.59		1.33	1,35	0,95	0,43	0,11	0,68	1,31	1,82	1,64	0,54
V.m.M/C	0.65	-	7,18	7,42	5,42	2,47	0,49	3,44	6,34	7,76	6,30	3,20
$V_{\alpha} = V_{\alpha} \cdot M/c$	5.67	3.73	1000	1,64	2,00	1,46	1,28	2,03	3,49	3,38	0,23	4,57

Построение планов ускорений точек и звеньсв.

Для положения 10.

$$z_{0} = \sqrt{\left(\frac{S^{2} + c}{lg\delta_{0}} - S\right)^{2} + c^{2}},$$

$$S' = y'_{1u} k'_{1} = 40 \cdot 0.0014 = 0.056 w - \text{antanor exopoctu},$$

$$k'_{1} = \frac{k_{1}}{\omega} = \frac{0.043}{30} = 0.0014 w/ww.$$

$$c = +0.010 w;$$

$$S_{0} = 29^{0};$$

$$S = y \cdot k_{1} = 15 \cdot 0.001 = 0.015 w - \text{itepemententie}$$

$$S = y \cdot k_{1} = 15 \cdot 0.001 = 0.015 w - \text{itepemententie}$$

$$r_{0} = \sqrt{\left(\frac{0.056 + 0.01}{lg29^{0}} - 0.015\right)^{2} + (0.01)^{2}} = 0.105 w.$$

Я.

Построение профиля кулачка.

9

$$= 0.025.w, R_p = \frac{r}{k_l} = \frac{0.025}{0.001} = 25.mw;$$

$$= 0.08.w, R_0 = \frac{r+r_0}{k_l} = \frac{0.025+0.080}{0.001} = 105.w;$$

4

2.3 Кинематический и силовой анализы.

Рассмотрим положение $\underline{3}$.

Определяем скорость толкателя.

$$V_{A} = \omega \cdot OA \cdot k_{L} = 30 \cdot 30 \cdot 0.001 = 0.9 M/c;$$

$$k_{V} = \frac{V_{A}}{2} = \frac{0.9}{20} = 0.013 M/c \cdot MM.$$

20 00

$$\overline{V_B} = \overline{V_A} + \overline{V_{BA}}, \qquad V_{BA} = ba \cdot k_{\psi} = 65.8 \cdot 0.013 = 0.86 M/c$$

$$//m \perp \text{DA} \perp \text{BA} \qquad V_B = ab \cdot k_{\psi} = 24 \cdot 0.013 = 0.312 M/c.$$

20

Определяем ускорение толкателя:

$$a_{ii} = \omega^2 \cdot OA \cdot k_L = 30^2 \cdot 30 \cdot 0.001 = 27 M/c^2;$$

$$k_{ii} = \frac{a_{ii}}{o'a'} = \frac{27}{80} = 0.34 M/c^2 \cdot MM.$$

$$\overline{a_n} = \overline{a_n} + \overline{a_{n_n}} + \overline{a_{n_n}}, \quad a_{n_n}^n = \frac{V_{n_n}^2}{BA \cdot k_1} = \frac{0.86^2}{93.8 \cdot 0.001} = 7.9 M/c$$

$$a_{wy} = 2 \cdot \omega_{wy} \cdot V_{ww} = 2 \cdot \omega_2 \cdot V_{HII} = 2 \cdot 8.06 \cdot 7.76 = 125.1 M/$$

$$z_{wy} = \frac{a_{wy}}{k_a} = \frac{125.1}{4} = 31.3 MM.$$

$$a_{ED} = z_{ED} \cdot k_a = 0.4 = 0.0 / c^2;$$

$$a_E = a_E = z_E \cdot k_a = 39.5 \cdot 4 = 158 M/c^2.$$

Для положения 12.

$$a_{A} = \omega_{1}^{2} \cdot t_{0A} = 45^{2} \cdot 0.165 = 334_{M}/c^{2}$$

$$k_{a} = 4_{M}/c^{2} \cdot MM;$$

$$\overline{z}_{A} = \frac{a_{A}}{k_{a}} = \frac{334}{4} = 83.5_{MM}.$$

$$\overline{a}_{B} + \overline{a}_{B}^{T} = \overline{a}_{A} + \overline{a}_{BA}^{T} + \overline{a}_{BA}^{T};$$

$$a_{Bd}^{n} = \frac{V_{Bd}^{2}}{l_{Bd}} = \frac{8.68^{2}}{0.56} = 134.5M/c^{2};$$

$$z_{B}^{n} = \frac{w_{Bd}^{n}}{k_{0}} = \frac{8.68^{2}}{0.56} = 134.5M/c^{2};$$

$$z_{B}^{n} = \frac{w_{Bd}^{n}}{k_{0}} = \frac{134.5}{4} = 33.6MM.$$

$$a_{Bd}^{n} = \frac{V_{Bd}^{n}}{l_{Bd}} = \frac{2.666^{2}}{0.5} = 14.2M/c^{2};$$

$$a_{Bd}^{n} = \frac{w_{Bd}^{n}}{k_{0}} = \frac{14.2}{0.5} = 3.5MM.$$

$$a_{Bd}^{n} = z_{Bd}^{n} \cdot k_{0} = 49.9 \cdot 4 = 199.6M/c^{2};$$

$$a_{Bd}^{n} = z_{Bd}^{n} \cdot k_{0} = 60.1 \cdot 4 = 240.4M/c^{2};$$

$$a_{Bd}^{n} = z_{Bd}^{n} \cdot k_{0} = 125.9 \cdot 4 = 503.6M/c^{2};$$

$$\begin{aligned} \frac{a_{S_{2}A}}{a_{B_{1}}} &= \frac{AS_{2}}{AB} \left[+k_{a}; \frac{aS_{2}}{ab} = \frac{AS_{2}}{AB}; & aS_{2} = \frac{AS_{2}}{AB}; & aS_{2} = \frac{AS_{2}}{AB} \cdot ab' = \frac{0.3}{1.0} \cdot 60.1 = 18.Mu; \\ a_{S_{2}A} &= z_{S_{2}A} \cdot k_{a} = 18 \cdot 4 = 76.M/c^{2}; \\ a_{S_{2}} &= z_{S_{2}} \cdot k_{a} = 88.2 \cdot 1 = 352.8M/c^{2}; \\ a_{B_{2}} &= \frac{AD}{AB} \left[+k_{a}; & \frac{ad'}{ab} = \frac{AD}{AB}; & ad' = \frac{AD}{AB} \cdot ab' = \frac{34.4}{112} \cdot 60.1 = 18.5_{MM}; \\ a_{BA} &= z_{DA} \cdot k_{a} = 18.5 \cdot 4 = 74.M/c^{2}; \\ a_{D} &= z_{D} \cdot k_{a} = 88.6 \cdot 4 = 354.4M/c^{2}; \\ a_{D} &= z_{D} \cdot k_{a} = 88.6 \cdot 4 = 354.4M/c^{2}; \\ a_{D} &= z_{D} \cdot k_{a} = 88.6 \cdot 4 = 354.4M/c^{2}. \end{aligned}$$

1.2. CHITTE3 MEXAHHI3MA. $\gamma' = 40^{\circ}$; $CB' = CB'' = \frac{I_A}{k_t} = \frac{0.5}{0.005} = 100.$ mm $\alpha = 90^{\circ} - \Theta$ $\Theta = 180^{\circ} \cdot \frac{k_w - 1}{k_w + 1} = 180^{\circ} \cdot \frac{1.133 - 1}{1.133 + 1} = 11^{\circ}$; $\alpha = 90^{\circ} - 11^{\circ} = 79^{\circ}$. $I_{0v} = OC \cdot K_t = 123.6 \cdot 0.005 = 0.618.$ m
$$\begin{split} OA &= 0.5(OB'' - OB') = 0.5(145 - 80) = 32.5_{MM};\\ AB &= OB' - OA = 0.5(OB'' + OB') = 0.5(145 + 80) = 112.5_{MM}\\ l_1 &= OA \cdot K_L = 32.5 \cdot 0.005 = 0.1625_M\\ l_2 &= AB \cdot K_L = 112.5 \cdot 0.005 = 0.5625_M \end{split}$$

1.3. Кинематический анализ.

Построение планов скоростей точек и звеньев.

Для положения 10.

$$\begin{split} V_{A} &= \omega_{1} \cdot l_{OA} = 45 \cdot 0.165 = 7.43 M/c; \\ k_{V} &= \frac{V_{A}}{oa} = \frac{7.43}{70} = 0.106 M/c \cdot AM. \end{split}$$

$$\begin{split} \overline{V_B} &= \overline{V_A} + \overline{V_{Bd}}; \\ \pm Bc \pm o_A \pm BA \\ V_{Bd} &= k_V \cdot ab = 0.106 \cdot 42.6 = 4.52 M/c; \\ V_B &= k_V \cdot ob = 0.106 \cdot 86.1 = 9.13 M/c. \end{split}$$

 $\frac{V_{S_{1}d}}{V_{Bd}} = \frac{S_2 A}{BA} \left| \begin{array}{c} \div k_{\nu}; & \frac{S_2 a}{ba} = \frac{S_2 A}{BA}; & s_2 a = \frac{S_2 A}{BA}; \\ b_{s_1d} = k_{\nu} \cdot as_2 = 0.106 \cdot 12.8 = 1.35 M/c; \end{array} \right|$ $V_{S_1} = k_{V} \cdot os_2 = 0.106 \cdot 72.6 = 7.70 m/c.$

$$\begin{split} & \frac{V_{DM}}{V_{BM}} = \frac{DA}{BA} \mid \pm k_{V}; \quad \frac{da}{ba} = \frac{DA}{BA}; \quad da = \frac{DA}{BA} \cdot ba = \frac{62.4}{112} \cdot 42.6 = 23.7_{MM}; \\ & V_{DM} = k_{V} \cdot ad = 0.106 \cdot 23.7 = 2.52_{M}/c; \\ & V_{D} = k_{V} \cdot od = 0.106 \cdot 76.6 = 8.12_{M}/c. \end{split}$$

Ш. Ш.АРНИРНО-РЫЧАЖНЫЙ МЕХАНИЗМ
 1.1 Задание на проектирование

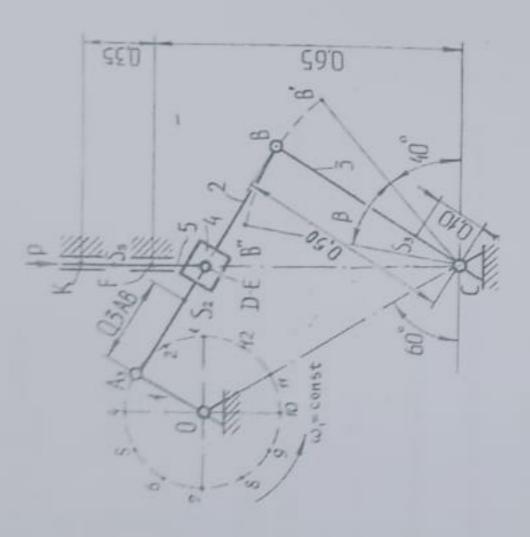


Рисунок 1.1 – Схема механизма.

Дано:

III.

$$=10\kappa c;$$
 $m_3 = 12\kappa c;$ $m_4 = 5\kappa c;$ $m_5 = 15\kappa c;$

$$J_2 = 0.8\kappa c \cdot m^2; \qquad J_3 = 0.9\kappa c \cdot m^2;$$

 $k_l = 0.005 m/.mm$;

$$k_{\omega} = 1.133;$$

 $\beta = 40^{\circ}$;

P↑↓VE:

P = 100H;

 $\omega_1 = 45 pao/c$;

положения механизма: 10, 12.