# Министерство сельского хозяйства Российской Федерации ФГБОУ ВО Казанский государственный аграрный университет Институт механизации и технического сервиса

Кафедра машин и оборудования в агробизнесе

# КУРСОВОЙ ПРОЕКТ

по дисциплине «Сельскохозяйственные машины»

Тема: Разработка конструкции картофелесажалки элеваторного типа

Шифр КП.35.03.06.471.24.

Студент 4 курса ИМиТС группы Б201-01

Волкова А.П.

(подпись)

(подпись)

Руководитель к.т.н., зав. кафедрой МОА

Халиуллин Д.Т.

Казань - 2024 г.

# СОДЕРЖАНИЕ

| ВВЕДЕНИЕ                                                       | 3 |
|----------------------------------------------------------------|---|
| 1. АГРОТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ4                                 | ļ |
| 2. АНАЛИЗ СУЩЕСТВУЮЩИХ КОНСТРУКЦИЙ6                            | ) |
| 2.1. Картофелесажалка КС для гребневой посадки6                |   |
| 2.2. Картофелесажалка полунавесная автоматизированная САЯ – 47 |   |
| 2.3. Картофелесажалка навесная двухрядная Л-201                | ) |
| 3. ОБОСНОВАНИЕ И ВЫБОР НОВОЙ КОНСТРУКЦИИ10                     | ) |
| 4. ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ13                                   | , |
| 5. КОНСТРУКТОРСКИЕ РАСЧЕТЫ16                                   | 5 |
| 6. ТЕХНИКО – ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ19                        | ) |
| ВЫВОД                                                          | 5 |
| СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ27                             | , |
| ПРИЛОЖЕНИЯ.                                                    |   |
| СПЕЦИФИКАЦИЯ.                                                  |   |

### **ВВЕДЕНИЕ**

Первоочередной задачей сельскохозяйственного производства является завершение комплексной механизации земледелия и животноводства; неуклонное повышение технического уровня, качества и надежности тракторов, комбайнов, машин и оборудования для растениеводства, животноводства и кормопроизводства; последовательное снижение материалоемкости и энергоемкости выпускаемой техники [1].

Качество и объемы промышленного производства товарного картофеля напрямую связаны с обеспеченностью отрасли хорошим посадочным материалом. События последних лет показали, что импорт семян из ведущих стран, производящих картофель, может быть ограничен или полностью заблокирован. Отсюда следует, что производство посевного и посадочного материала важнейших сельскохозяйственных культур нужно рассматривать как одну из главных задач отечественного агропромышленного комплекса.

Цель проекта: разработать конструкцию элеваторной картофелесажалки.

#### Задачи проекта:

- рассмотреть агротехнические требования;
- проанализировать существующие конструкции;
- разработать новую конструкцию;
- провести технологические и конструкторские расчеты.

## 1. АГРОТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

К технологии производства каждой механизированной работы предъявляются определенные агротехнические требования, которые должны быть удовлетворены при ее выполнении. Агротехнические требования задаются в виде нормативов и технологических допусков на качество выполнения сельскохозяйственных работ. При этом определяющим должно быть получение максимального количества сельскохозяйственной продукции высокого качества, повышение плодородия почв, при наименьших затратах труда и средств.

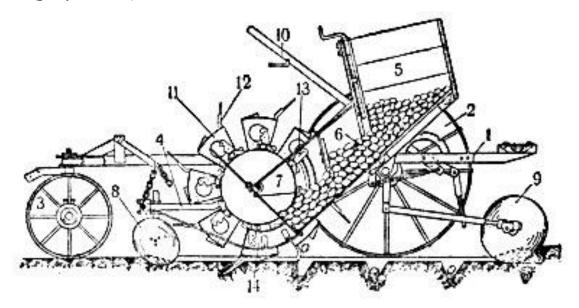
На работу МТА и выполнение агротехнических требований оказывает влияние ряд внешних условий (состояние поля, рельеф местности, физикомеханические свойства обрабатываемого материала, агрофон, каменистость почвы и др.) и эксплуатационные режимы работы МТА (скорость, прямолинейность рабочего хода, способ движения и др.). Эти факторы необходимо учитывать при установлении нормативных значений и допускаемых отклонений технологических параметров, а также ограничений и указаний по качеству работы.

Картофелесажалки должны высаживать клубни картофеля рядовым способом с шириной междурядий 60 и 70 см с интервалами 20—40 см на глубину: при гребневой посадке 8—16 см от вершины гребня; при гладкой посадке 6—12 см от поверхности поля. Отклонения от заданной глубины заделки клубней не должны быть более 2 см.

При посадке нужно выдерживать прямолинейность рядков и заданную ширину междурядий. При ширине междурядий 70 см отклонение ширины основных междурядий не должно превышать +2 см, а стыковых  $\pm 10$  см.

Высаживать следует отсортированные, здоровые клубни картофеля в лучшие агротехнические сроки для данной зоны с оптимальной нормой высадки.

Для посадки рекомендуется использовать клубни массой 50—80 г. Допускается посадка мелких клубней массой 30-50 г и крупных массой 80—120 г, а также посадка разных клубней. Посадочная норма 2—3 т на 1 га.


Посадочные аппараты не должны повреждать клубни картофеля, а при работе с пророщенными клубнями не должны обламывать ростки, оптимальная длина которых 1 — 1,5 см.

Картофелесажалки одновременно с посадкой картофеля должны обеспечить внесение 100—500 кг/га гранулированных минеральных удобрений с почвенной прослойкой между ними и клубнями.

# 2. АНАЛИЗ СУЩЕСТВУЮЩИХ КОНСТРУКЦИЙ

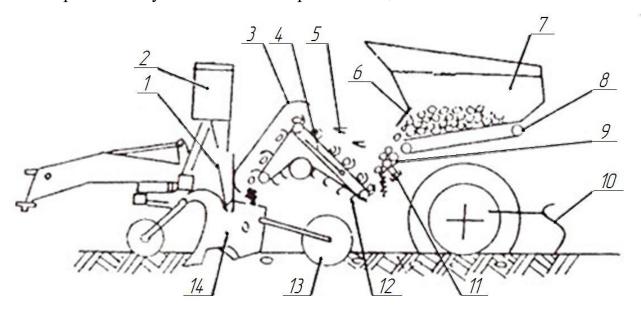
## 2.1. Картофелесажалка КС для гребневой посадки

Картофелесажалка - машина для посадки картофеля, производящая одновременно (за 1 проход) нарезку борозд, посадку клубней и заделку их рыхлой почвой. По типу основного рабочего органа - высаживающего аппарата (рисунок 2.1).



1 - основная рама; 2 - ходовые колёса; 3 - передок; 4 - посадочная рама; 5 - семенной ящик (бункер); 6 - питательный ковш; 7 - посадочный барабан; 8 - бороздораскрывающий диск; 9 - заделывающие диски; 10 - рычаг подъёма; 11 - ячейка посадочного барабана; 12 - лункокопатель; 13 - ложечка; 14 - питательный рукав

Рисунок 2.1 - Схема картофелесажалки КС для гребневой посадки


При погружении лункокопателей в почву посадочные барабаны свободно вращаются на оси, выкапывая лункокопателями ямки (лунки) для картофеля. Для сталкивания клубней из ложечек в ячейки барабана имеются спец. толкатели (изогнутые стержни, соединённые со спиральной пружиной), укреплённые на крестовинах питательного ковша. При вращении барабана толкатель свободно проходит в прорезь ложечки.

Впереди посадочных барабанов укреплены на квадратном валу дисковые бороздораскрыватели, глубина хода которых может быть отрегулирована при помощи рычажного механизма, а также соответствующей установкой стойки по высоте. см.

Позади посадочных барабанов установлены бороздозаделыватели, состоящие из двух сферических дисков. Диски поставлены под углом как к линии движения, так и к вертикали и, вращаясь во время работы, сдвигают почву к середине рядка, образуя гребень того или иного размера, в зависимости от установки дисков. Для гладкой посадки картофеля к машине прилагался дополнительный набор полуосей для установки дисков и боронки.

## 2.2. Картофелесажалка полунавесная автоматизированная САЯ – 4

Картофелесажалка полунавесная четырехрядная автоматизированная САЯ – 4 используется для гребневой либо гладкой посадки яровизированных пророщенных клубней картофеля с проведением одновременного внесения минеральных удобрений (рисунок 2.2). Данная картофелесажалка может быть применена для посадки неяровизированных картофельных клубней, а также резаных клубней либо смеси резаных с целыми.



1 — лоток; 2 — туковысевающий аппарат; 3 — кожух; 4 — лоток; 5 — пружина; 6 — заслонка; 7 — бункер; 8 — питающий транспортер; 9 — питательный ковш; 10 — рыхлитель следа колес; 11 — датчик; 12 — ложечка; 13 — бороздозакрывающий диск; 14 — сошник.

Рисунок 2.2 - Схема технологического процесса сажалки САЯ-4

Технологический процесс происходит следующим образом. Приготовленные для посадки клубни картофеля загружаются в бункеры сажалки, а удобрения в туковысевающие банки.

При отодвинутой заслонке клубни из бункера транспортером подаются в питательный ковш, при заполнении которого датчик автоматически отключает привод транспортера.

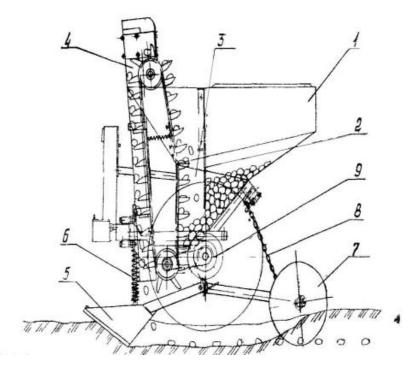
Из питательного ковша клубни картофеля забираются ложечками передвигающегося ложечного транспортера. Лишние клубни, взятые ложечкой, отбрасываются пружинами на качающийся лоток и возвращаются в питательный ковш. Оставшиеся клубни транспортируются и через кожух попадают в борозду, приготовленную сошником. Закрывают борозды с высаженными в них клубнями диски.

В борозды удобрения вносятся туковысевающими аппаратами при помощи лотка. Уплотненный колесами слой почвы разрыхляется рыхлителями.

# 2.3. Картофелесажалка навесная двухрядная Л-201

Картофелесажалка навесная двухрядная Л-201 предназначена для рядовой посадки пророщенных и непророщенных клубней картофеля.

Технологический процесс, выполняемый сажалкой — протекает следующим образом (рисунок 2.3). После заезда агрегата в борозду сажалка опускается навесным устройством трактора в рабочее положение.


Загрузка бункера картофелем производится вручную. После загрузки в бункера тракторист трогает с места, крутящий момент от приводных колёс передаётся на высаживающие аппараты посредством цепной передачи.

Клубни картофеля из основного бункера самотёком подаются в питательный бункер.

Двигаясь вверх, ложечки высаживающих аппаратов захватывают клубни.

Если после выхода ложечки из слоя клубней в ней находится лишний клубень, то под действием встряхивателя он падает обратно в питательный

бункер. при движении ложечки вниз клубень попадает в борозду через внутреннюю полость сошника.



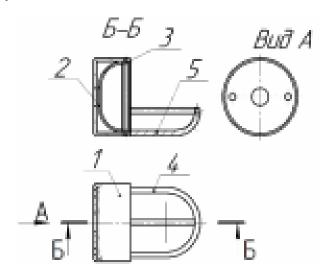
1 — бункер; 2 — заслонка бункера; 3 — бункер питательный; 4 — высаживающий аппарат; 5 — сошник; 6 — стойка сошника; 7 — бороздозакрыватель; 8 — круглозвенная цепь; 9 — привод с опорными колесами.

Рисунок 2.3 – Технологическая схема картофелесажалки Л-201

Двигаясь вверх, ложечки высаживающих аппаратов захватывают клубни.

Если после выхода ложечки из слоя клубней в ней находится лишний клубень, то под действием встряхивателя он падает обратно в питательный бункер. при движении ложечки вниз клубень попадает в борозду через внутреннюю полость сошника.

Закрытие борозд с высаженными клубнями производится бороздозакрывающими дисками.

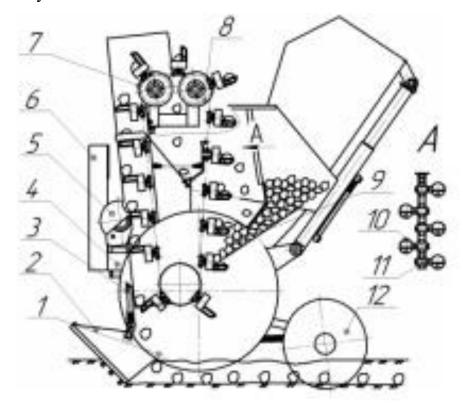

При наезде на препятствие происходит выглубление сошника. После преодоления препятствия сошник под действием пружины возвращается в исходное положение.

# 3. ОБОСНОВАНИЕ И ВЫБОР НОВОЙ КОНСТРУКЦИИ

Основными недостатками высаживающих аппаратов картофелесажалки Л-201 являются низкая надежность конструкции вычерпывающих ложечек, высокая материалоемкость, пропуски при посадке и высадка нескольких клубней в одно гнездо. Пропуски при посадке крупных и средних клубней не должны превышать 3...8%, число двоек до 8% [2].

Поставленная цель достигается путем установки одной тяговой цепи с шагом расположения пластин для крепления тридцати ложечек равным 76,2 мм вместо двух цепей с шагом расположения ложечек 152,4 мм, изменения конструкции ведущего и ведомого валов тяговой цепи и ложечек, установленных на ней с обеих сторон, а также изменения траектории их движения.

Ложечка модернизированного высаживающего аппарата (рисунок 3.1) состоит из корпуса 1, сменного вкладыша 2, стопорного кольца 3, скобы 4 и поддерживающего прутка 5.




1 – стаканчик; 2 – вкладыш; 3 – кольцо стопорное; 4 – скоба; 5 – пруток.

Рисунок 3.1 – Ложечка модернизированного высаживающего аппарата картофелесажалки Л-201

Сменный вкладыш 2 модернизированной ложечки имеет 3...4 типоразмера внутренней сферы R = 20...30 мм и выбирается он в зависимости от размеров высаживаемых клубней. Траектория движения ложечек модернизированного высаживающего аппарата изменена путём установки дополнительного блока ведомой звёздочки, так чтобы в верхней части аппарата получился горизонтальный участок движения тяговой цепи.

В процессе работы ложечки 10, прикреплённые к тяговой цепи с обеих сторон, при помощи пластин 11, заходят в питающий ковш 9 и заполняются клубнями (рисунок 3.2). При этом в каждую ложечку может попасть один или несколько клубней.



1 — колесо ходовое; 2 — сошник; 3 — регулятор глубины; 4 — рама; 5 — муфта предохранительная; 6 — автосцепка; 7 — звездочка основная ведомая; 8 — звездочка дополнительная ведомая; 9 — ковш питающий бункер; 10 — ложечка; 11 — пластина; 12 — диски закрывающие.

Рисунок 3.2 — Схема технологическая модернизированного высаживающего аппарата картофелесажалки Л-201

При подъёме ложечек и движении цепи по горизонтальному контуру между дополнительной 8 и основной 7 ведомых звёздочек ложечки

принимают вертикальное положение и клубни, оставшиеся в ложечке, перекатываются во вкладыш стаканчика. Внутренний объём вкладыша стаканчика рассчитан на приём только одного клубня. Он заполняется, а все остальные клубни, находящиеся в ложечке, выпадают из неё и попадают обратно в питающий ковш бункера 9 за счёт вибрации машины и вибропобудителя, установленного под рабочей ветвью тяговой цепи. После прохода основной ведомой звёздочки тяговая цепь заходит в клубнепровод и ложечки занимают перевёрнутое положение. Клубни, находящийся во вкладышах стаканчиков, выпадают из них и падают на предыдущие ложечки, движутся вместе с ними в зону сошника 2 и падают в подготовленное ложе. Закрывающие диски 12 образуют гребень.

Предлагаемая модернизация высаживающих аппаратов сажалки, позволит стабилизировать технологический процесс посадки клубней, снизить материалоемкость машины и затрат посадочного материала.

#### 4. ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ

На производительность сажалки влияют следующие конструктивные факторы: скорость элеватора и производительность самого элеватора.

Определяем скорость цепи:

$$V = r \sqrt{\frac{g}{h_n}},\tag{4.1}$$

где V – скорость цепи, м/с;

r — радиус звездочки, м;

g – ускорение свободного падения, м/ $c^2$ .

$$V = 0.08 \sqrt{\frac{9.81}{0.11}} = 0.59 \text{ m/c}$$

Угловая скорость диска при этом составит:

$$\omega = \frac{v}{r},\tag{4.2}$$

где  $\omega$  — угловая скорость диска, рад/с;

v — скорость диска, м/с;

r – радиус диска, м.

$$\omega = \frac{0,59}{0,08} = 7,38 \text{ рад/с}$$

При захвате клубня ковшом возможно опрокидывание клубня из-за действия центробежной силы, поэтому условие устойчивости обеспечивается, если угловая скорость элеватора

$$\omega \le \sqrt{\frac{g\psi}{r}} \tag{4.3}$$

где  $\omega$  – угловая скорость элеватора, рад/с;

g — ускорение свободного падения,  $g = 9.81 \text{ м/c}^2$ ;

 $\psi$  – приведенный угол трения,  $\psi$  =17...20°;

*r* - радиус звездочки, м.

$$\omega \le \sqrt{\frac{9,81*0,11}{0,08}} = 47 \text{ рад/с}$$

Условие устойчивости соблюдается.

Определим рабочие параметры картофелесажалки и проверим их соответствие выбранным параметрам по условию выгрузки клубней из ковшей.

Согласно принятой технологии посадки определим число высаживаемых клубней на 1 гектар площади посадки, для чего определим площадь под один клубень:

$$S_1 = l_{\kappa}b \tag{4.4}$$

где  $s_1$  – площадь посадки под один клубень, м<sup>2</sup>;

 $l_k$  — расстояние между клубнями в рядке,  $l_k$  = 0,3 м;

b - ширина междурядья, b = 0.7 м.

$$s_1 = 0.3 * 0.7 = 0.21 \text{ m}^2$$

Число клубней на один гектар (густота посадки):

$$N = \frac{10^4}{S_1} \,, \tag{4.5}$$

Где N — число клубней на один гектар, шт/га;

 $s_1$  – площадь посадки под один клубень, м<sup>2</sup>.

$$N = \frac{10^4}{0.21} = 47619 \text{ m}\text{T/ra}$$

При этом норма высадки картофеля определится по формуле:

$$Q = \frac{10^4 m}{S_1} \,, \tag{4.6}$$

где Q — норма высадки картофеля, кг/га;

m – масса клубня, m = 0.05...0.06 кг;

 $s_1$  - площадь посадки под один клубень, м<sup>2</sup>.

$$Q = \frac{10^4 * 0.06}{0.21} = 2857 \text{ kg/ra}$$

Теоретическая часовая производительность агрегата определяется по формуле:

$$W_m = 0.1B_k V_m, (4.7)$$

где  $W_m$  - теоретическая часовая производительность, га/ч;

 $B_k$  - конструктивная ширина захвата, м;

 $V_m\,$  - теоретическая скорость движения агрегата, км/ч.

$$W_m = 0.1*0.7*8 = 0.56$$
 га/ча.

#### 5. КОНСТРУКТОРСКИЕ РАСЧЕТЫ

Детали, расположенные под углом 90° свариваются тавровым соединением.

Определение допускаемого усилия для растяжения:

$$[P] = [\tau_{\phi}] \cdot 0.7 \cdot \kappa \cdot l, \tag{5.1}$$

где  $[\tau_{\phi}]$  – допускаемое напряжение для сварного шва на срез,  $H/M^2$ ;

 $\kappa$  – катет шва;

 $\it l-$  длина шва;  $\it l$ = 100 см.

$$[\tau_{\phi}] = 0, 6 \cdot [\sigma_{p}], \tag{5.2}$$

где  $[\sigma_p]$  – допускаемое напряжение на растяжение,  $[\sigma_p]$ =600H/см<sup>2</sup>.

$$[\tau_{\phi}] = 0.6.600 = 360 \text{ H} \cdot \text{cm}^2$$

Определение усилия растяжения

$$P = \frac{2M_{\kappa}}{l},\tag{5.3}$$

где l - величина длины шва, м

$$P = 2.500/1 = 10000 \text{ H}$$

Итак, P < [P] условие выполняется.

Внешняя нагрузка, приходящаяся на один болт, определяется по формуле (5.4).

$$P_{\delta} = \frac{P_{ycm}}{6}, \tag{5.4}$$

где  $P_{\delta}$  – внешняя нагрузка, приходящаяся на один болт, H;

 $P_{ycm}$  - вес установки,  $P_{ycm} = 380 \text{ H}.$ 

$$P_6 = 380/6 = 65 \text{ H}.$$

Определяем расчетное усилие:

$$P_{pacy} = 2.8 P_{6},$$
 (5.5)

где 2,8 - коэффициент, учитывающий предварительную растяжку.

Изгибающий момент на головку болта определяется расчетом по формуле:

$$M_{u3z}=0.5 P_{pacy}\cdot 0.5 d,$$
 (5.6)

где d - диаметр не нарезанного стержня болта; определяется расчетом.

Момент сопротивления сечения болта, определяется расчетом по формуле (5.7):

$$W_{u32} = \frac{d(0.8 \cdot d^2)}{6} \tag{5.7}$$

Определяем расчетное усилие, приходящаяся на болт, Н.

$$P_{pacy}$$
=2,8 ·65=182 H

Определяем диаметр болта.

$$P_{pac^{4}} = F[\sigma]_{p} = \frac{\pi d^{2}}{4} [\sigma]_{p}$$

$$d = \sqrt{\frac{4P_{pac^{4}}}{\pi[\sigma]_{p}}} = \sqrt{\frac{4*182}{3,14*16*10^{7}}} = 0,012 \text{ M}$$
(5.8)

где  $[\sigma]_p$ - допустимое напряжение в стержне болта,  $[\sigma]_p$ =16 ·10<sup>7</sup> Па

Расчет на прочность при изгибе ведется по формуле [5.9]:

$$\sigma_{u32} = \frac{M_{u32}}{W_{u32}} < [\sigma]_{u32}, \qquad (5.9)$$

где  $\sigma_{use}$  - напряжение на изгиб, Па

$$M_{u3z}$$
=0,5 ·185 ·0,5 ·0,012=0,56 H·м

 $W_{u3z}$ =12(0,8 ·12<sup>12</sup>)/6=230 мм<sup>2</sup>
 $\sigma_{u3z}$ =0,56 ·10<sup>3</sup>/230= 2,4 H/мм<sup>2</sup>=0,024 Па

 $\sigma_{u3z} < [\sigma]_{u3z}$  (5.10)

0,024 < 1,4

Условие прочности выполняются.

#### Расчет шпонок

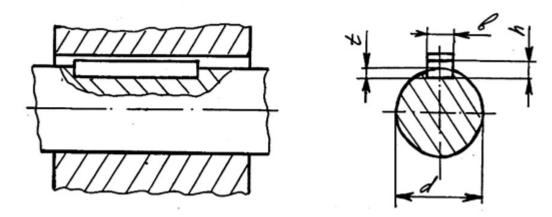



Рисунок 5.1 - Размеры сечений шпонок.

Шпонку привода проверяем на смятие: шпонка 10x8x40 ГОСТ 8788-68.

Размеры сечений шпонки: d=36 мм, h=8 мм, t=5 мм,  $l_p$ =30 мм.

$$\sigma c M = 2 \cdot \frac{T}{d} \cdot (h-t) \cdot l_p < [\sigma] \text{ cm}, \qquad (5.11)$$

где T – предаваемый момент,  $H \cdot M$ ;

d - диаметр вала, м;

h - высота шпонки, мм;

t - глубина паза вала, мм;

 $l_p$  - рабочая длина, мм.

[ $\sigma$ ] см - допустимое напряжение смятия,  $H/мH^2$ .

$$\sigma$$
 cm=2·7579/0,036·(8-5)·30<60000

$$\sigma$$
 cm = 4678 < 60000 H/mm<sup>2</sup>

Шпонку проверяем на смятие:

Шпонка 10х8х100 ГОСТ 8788-68.

Размеры сечений шпонки (рис. 5.1): d=36 мм, h=8 мм, t=5 мм,  $l_p=9$  мм.

$$\sigma \text{ cm} = 2.17460/0,036 \cdot (8-5).90 < 60000$$

$$\sigma \text{ cm} = 3592 < 60000 \text{ H/mm}^2$$
(5.12)

Таким образом, в результате выполненных конструкторских расчетов подобраны и установленные оптимальные конструктивные элементы разрабатываемой конструкции.

### 6. ТЕХНИКО – ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

При проектировании какого-либо изделия или детали необходимо учитывать не только технические, но и экономические показатели. Одним из основных показателей, в условиях рыночной экономики, является затраты на производство и эксплуатацию каких-либо агрегатов.

Масса конструкции определяется по формуле:

$$G = (G_{\kappa} + G_{\Gamma}) \cdot K, \tag{6.1}$$

где  $G_{\kappa}$  - масса сконструированных деталей, узлов и агрегатов, кг;

 $G_{\Gamma}$  - масса готовых (покупных) деталей, узлов и агрегатов, кг;

K - коэффициент, учитывающий массу расходуемых на изготовление конструкции монтажных материалов (для расчетов применяются K=1,05...1,25).

$$G = (80+282)\cdot 1.05=380 \text{ K}\text{T}.$$

Балансовая стоимость новой конструкции производится на основе сопоставимости массы по формуле:

$$C_{61} = \frac{C_{60} * G_0 * \sigma}{G_1} , \qquad (6.2)$$

где  $C_{60}$ ,  $C_{61}$  - соответственно балансовая стоимость существующей и проектируемой конструкции, руб.;

 $G_0, G_1$  - соответственно масса существующей и проектируемой конструкции, кг;

 $\sigma$  - коэффициент удешевления конструкции  $\sigma = 0.9...0.95$ .

$$C_{61} = \frac{140000*380*0,92}{380} = 128000 \text{ py6}.$$

Прежде чем приступить к расчету технико-экономических показателей, необходимо собрать исходные данные (таблица 6.1)

Таблица 6.1 - Исходные данные для расчёта технико-экономических показателей

|                                           | показатели        |         |  |
|-------------------------------------------|-------------------|---------|--|
| Наименование                              | проектир<br>уемый | базовый |  |
| Масса конструкции, кг                     | 360               | 360     |  |
| Балансовая стоимость, тыс.руб.            | 128000            | 140000  |  |
| Потребляемая мощность, кВт                | 8                 | 10      |  |
| Количество обслуживающего персонала, чел. | 1                 | 1       |  |
| Разряд работы                             | 3                 | 3       |  |
| Тарифная ставка, руб./чел-ч               | 90                | 90      |  |
| Нормы амортизации, %                      | 14                | 14      |  |
| Норма затрат на ремонт и ТО, %            | 11                | 13      |  |
| Годовая загрузка конструкции, ч           | 140               | 140     |  |

При расчетах показатели базового варианта обозначаются как  $x_0$ , а проектируемого как  $x_1$ . Часовая производительность машин определяется:

$$W_{q}=0.36 \cdot B_{P} \cdot V_{P} \cdot \tau, \tag{6.3}$$

где  $B_P$  — рабочая ширина захвата, м;

 $V_P$  - рабочая скорость движения, м/с;

 $\tau$  - коэффициент использования рабочего времени смены, (0,60...0,95).

$$W_{\rm u} = 0.36 \cdot 0.7 \cdot 1.1 \cdot 0.6 = 0.17$$
 ед/ч

Энергоемкость процесса:

$$\mathcal{G}_e = \frac{N_e}{W_4} \tag{6.4.}$$

где  $N_e$  — потребляемая мощность, кВт;

 $W_{4}$  - часовая производительность, ед/ч.

$$\Theta_{e0} = 10/0,17 = 58,8 \text{ кВт/ед}$$

$$\Theta_{el} = 8/0,17 = 47,1$$
 кВт/ед

Металлоемкость процесса, кг/ед.:

$$M_c = \frac{G_i}{W_u \cdot T_{200} \cdot T_{cy}} \tag{6.5.}$$

где  $G_i$  – масса агрегата, кг;

 $W_{\rm q}$  - часовая производительность, ед/ч;

 $T_{codi}$  - соответственно, годовая загрузка машин и орудий, ч;

 $T_{cлi}$  - срок службы машин и орудий, лет.

$$M_{c0} = 380/(0.17*140*8)=1.9$$
кг/ед.

$$M_{cl} = 380/(0.17*140*8) = 1.9$$
кг/ед.

Фондоемкость процесса руб/га;

$$F_{e} = \frac{C_{6}}{W_{4}T_{ca}T_{roa}}$$

$$(6.6.)$$

где  $C_{\delta}$  – балансовая стоимость, руб;

 $W_{\rm q}\,$  - часовая производительность, ед/ч;

 $T_{codi}$  - соответственно, годовая загрузка машин и орудий, ч;

 $T_{cni}$  - срок службы машин и орудий, лет.

$$F_{e0} = 140000 / (0.17*140*8) = 735.3$$
 руб/ед.

$$F_{e0}$$
 = 128000 /(0,17\*140\*8)=672,3 руб/ед.

Трудоемкость процесса находят из выражения:

$$T_e = n_{o\delta cn}/W_{u_i} \tag{6.7.}$$

где  $T_e$  - трудоемкость процесса, чел·ч/ед

 $n_{oбcn}$  - количество обслуживающего персонала, чел,

 $W_{v}$  - эксплуатационная производительность машины, ед/ч.

$$T_e = 1/0,17 = 6 \text{ чел} \cdot \text{ч/ед},$$

Себестоимость работы определяют по формуле:

$$S_i = C_{3ni} + C_{2i} + C_{PTOi} + A_i,$$
 (6.8.)

где  $C_{3ni}$  – затраты на оплату труда, руб/ед;

 $C_{9i}$  - затраты на ГСМ, руб/ед;

 $C_{PTOi}$  - затраты на ремонт и техническое обслуживание, руб/ед;

 $A_i$  - амортизационные отчисления, руб/ед.

Затраты на заработную плату определяют по формуле:

$$C_{3n} = Z \cdot T_e, \tag{6.9}$$

где  $C_{3n}$  - затраты на оплату труда, руб./ед,

Z - тарифная часовая ставка, руб./чел·ед,

 $T_e$  - трудоемкость процесса, чел·ч/ед.

$$C_{3\Pi} = 90.0,17=15,3$$
 руб./ед;

Затраты на ГСМ рассчитывают по формуле:

$$C_{9} = II_{KOMNJ} \cdot q \tag{6.10}$$

где U – комплексная цена ГСМ, руб/кг;

*q*- расход топлива, кг/га.

$$C_9 = 60.3,8 = 228$$
 руб/ед

Затраты на ремонт и техническое обслуживание определяют по формуле:

$$C_{PTO} = C_{\delta} H_{PTO} / 100 W_{\nu} T_{roo}, \qquad (6.11)$$

где  $H_{pto}$  - норма затрат на ремонт и техобслуживание, %.

$$C_{PTO0} = 140000 \cdot 13/100 \cdot 0,17 \cdot 140 = 764,7$$
 руб./га

$$C_{PTO1} = 128000 \cdot 11/100 \cdot 0,17 \cdot 140 = 591,6$$
 руб./га.

Затраты на амортизацию рассчитывают по формуле:

$$A_i = C_{\delta i} a_i / (100 W_{ui} T_{zo\delta i}), \tag{6.12}$$

где  $A_i$  — затраты на амортизацию, руб/ед;

 $C_{6i}$  -балансовая стоимость машины, руб;

 $a_i$  – норма амортизации, %;

 $W_{ui}$  - эксплуатационная производительность, ед/ч;

 $T_{codi}$  – годовая загрузка машины, ч.

$$A_1 = 140000 \cdot 14/100 \cdot 0,17 \cdot 140 = 823$$
 руб/ед,

$$A_2 = 128000 \cdot 14/100 \cdot 0,17 \cdot 140 = 752$$
 руб./ед.

Определив все данные, подставляем в формулу (6.8):

$$S_{9\kappa c0} = 15,3+228+764,7+823=1831$$
 руб./га;

$$S_{3\kappa cI}$$
 = 15,3+228+591,6+752 =1586,9 руб./га.

Уровень приведенных затрат на работу конструкции определяют по формуле:

$$C_{npi} = S_{\mathfrak{K}ci} + E_{Hi}K_{\mathcal{V}oi}, \tag{6.13}$$

где  $C_{npi}$  - уровень приведенных затрат, руб/га;

 $E_{Hi}$  - нормативный коэффициент эффективности капитальных вложений-0.15;

 $K_{y\partial i}$  - удельные капитальные вложения или фондоемкость процесса, руб/ед.

$$C_{np0}$$
 = 1831+0,15·735,3 = 1941,3 руб./га;  
 $C_{np1}$  = 1586,9+0,15·672,3 = 1687,7 руб./га.

Годовая экономия определяется по формуле:

$$\mathcal{G}_{200} = (S_{9\kappa c0} - S_{9\kappa c1}) W_{4} T_{200}, \tag{6.14}$$

где  $\Theta_{cod}$  - годовая экономия, руб;

 $S_{{\scriptscriptstyle {\it JKCO}}}$  - уровень эксплуатационных затрат базовой машины, руб/га;

 $S_{\ \ 
m 9\kappa cI}$  - уровень эксплуатационных затрат спроектированной машины, руб/га;

 $W_{\scriptscriptstyle q}\,$  - эксплуатационная производительность машины, га/ч;

 $T_{200}$  — годовая загрузка спроектированной конструкции, ч.

$$\Theta_{\text{rod}} = (1831 - 1586, 9) \cdot 0, 17 \cdot 140 = 5809, 6 \text{ py6}.$$

Годовой экономический эффект определяют по формуле:

$$E_{20\partial} = \mathcal{G}_{20\partial} - E_{H} \Delta K, \tag{6.15}$$

где  $E_{H}$  - нормативный коэффициент эффективности капитальных вложений – 0,15;

 $\Delta K$  - дополнительные вложения, равные балансовой стоимости конструкции, руб.

$$E_{200}$$
 = 5809,6 - 0,15·128000= 3889,6 руб.

Срок окупаемости дополнительных капитальных вложений определяют по формуле:

$$T_{o\kappa} = C_{61}/9_{200},\tag{6.16}$$

где  $T_{o\kappa}$  - срок окупаемости дополнительных капитальных вложений, лет;

 $C_{6l}$  - балансовая стоимость конструкции, руб.;

 $9_{200}$  – годовая экономия, руб.

$$T_{o\kappa}$$
=128000/5809,6 = 2,2 года.

Коэффициент эффективности дополнительных капитальных вложений определяют по формуле:

$$E_{2\phi} = \mathcal{G}_{20\phi} / C_{\delta I}, \tag{6.17}$$

где  $E_{9\varphi}$  - коэффициент эффективности дополнительных капитальных вложений;

Эгод - годовая экономия, руб;

 $C_{61}$  – балансовая стоимость конструкции, руб.

$$E_{9\phi} = 5809,6/128000 = 0,45$$

Результаты расчетов сводятся в таблицу 6.2.

Таблица 6.2. - Сравнительные технико-экономические показатели эффективности конструкций

| №         | Наименование показателей                    | Базовый | Проект | Проект в % |
|-----------|---------------------------------------------|---------|--------|------------|
| $\Pi/\Pi$ |                                             |         |        | к базовому |
| 1         | Часовая производительность, ед/ч            | 0,17    | 0,17   | -          |
| 2         | Фондоемкость процесса, руб/ед               | 735,5   | 672,3  | 91         |
| 3         | Энергоемкость процесса, кВт/ед              | 55,8    | 47,1   | 84         |
| 4         | Трудоемкость процесса, чел-ч/ед             | 6       | 6      | -          |
| 5         | Уровень эксплуатационных затрат,<br>руб./ед | 764,7   | 591,6  | 77         |
| 6         | Уровень приведенных затрат, руб./ед         | 1941,3  | 1687,7 | 87         |
| 7         | Годовая экономия, руб.                      | -       | 5809,6 | -          |
| 8         | Годовой экономический эффект, руб.          | _       | 3889,6 | -          |

продолжение таблицы 6.2

| 9   | Срок окупаемости капитальных | - | 2,2  | - |
|-----|------------------------------|---|------|---|
|     | вложений, лет                |   |      |   |
| 1.0 | TC 11 11                     |   | 0.45 |   |
| 10  | Коэффициент эффективности    | - | 0,45 | - |

Сравнивая технико — экономические показатели по таблице 6.2. можно сделать вывод, что проектируемая конструкция является экономически выгодной. Она по многим показателям (фондоемкость, энергоемкость, металлоемкость, уровень эксплуатационных затрат , уровень приведенных затрат ) опережает базовую .Срок окупаемости ее ниже 7 лет и коэффициент эффективности более 0,15. Из всего следует, что проектируемая конструкция является экономически эффективной.

#### **ВЫВОД**

Картофелесажалка — это сельскохозяйственный агрегат, используемый для посадки картофеля. Картофелесажалка является эффективным и удобным инструментом, упрощающим процесс посадки картофеля. Она позволяет значительно ускорить работу, сократить трудозатраты и обеспечить более равномерное распределение клубней на гребне.

При использовании картофелесажалки повышается производительность и качество процесса посадки, что в свою очередь может положительно сказаться на урожае.

Чтобы не допускать пропуски при посадке и высадка нескольких клубней в одно гнездо, я предлагаю в данном курсовом проекте установить одну тяговую цепи с шагом расположения пластин для крепления тридцати ложечек равным 76,2 мм вместо двух цепей с шагом расположения ложечек 152,4 мм, изменения конструкции ведущего и ведомого валов тяговой цепи и ложечек, установленных на ней с обеих сторон, а также изменения траектории их движения.

Предлагаемая модернизация высаживающих аппаратов сажалки, позволит стабилизировать технологический процесс посадки клубней, снизить материалоемкость машины и затрат посадочного материала.

# СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Зиганшин Б.Г., Нуруллин Э.Г., Халиуллин Д.Т., Дмитриев А.В., Лукманов Р.Р. Сельскохозяйственные машины: Метод. указания Казань: Изд-во Казанского ГАУ, 2015. 27с.
- 2. Кленин Н.И. Сельскохозяйственные машины. / Н.И. Кленин, С. Н. Киселев, А. Г. Левшин. М.: КолосС, 2008. 816 с.
- 3. Сельскохозяйственные машины. Технологические расчеты в примерах и задачах: учеб. пособие / под ред. М. А. Новикова. СПб.: Проспект Науки, 2011. 208 с. (П 072 С 298 1404828).
- 4. ГОСТ Р 53056-2008. Техника сельскохозяйственная. Методы экономической оценки. М.: Стандартинформ, 2009 20с.
- 5. Нуруллин Э.Г. Сельскохозяйственные машины (Краткий курс лекций и тестовые задания): Учеб. пособие для самост. работы. Казань: Изд-во Казанского ГАУ, 2011. 120 с.
  - 6. Научная электронная библиотека E-library.ru;
- 7. Агропоиск по информационным справочным и поисковым системам: Rambler, Yandex, Google.
  - 8. Издательство «Лань» по адресу http://e.lanbook.com