МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Кафедра МОА

КУРСОВОЙ ПРОЕКТ по ТТЖ

на тему: Разработка щековой дробилки

Выполнил: студент группы Б201-01 Волкова А.П.

Проверил: Кашапов И.И.

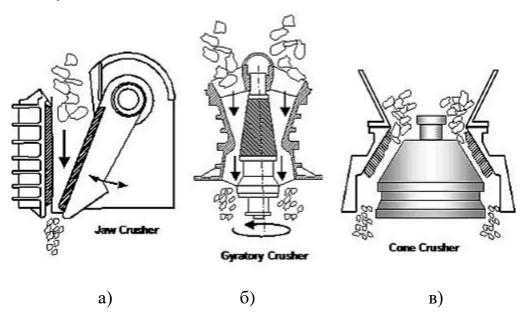
СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	2
ВВЕДЕНИЕ	3
1.ОБЗОРКОНСТРУКЦИЙУСТАНОВОК ДЛЯ ДРОБЛЕНИЯ	
ИЗВЕСТНИКА	4
2. ПРОЕКТИРОВАНИЕТЕХНОЛОГИЧЕСКОЙЛИНИИПОПРОИЗВОДО	СТВУД
ОЛОМИТОВОЙ МУКИ	11
3. ПРОЕКТИРОВАНИЕЩЕКОВОЙДРОБИЛКИ	13
3.1. Выбортипоразмерадробилки	13
3.2. Определениеразмеровмеханизмадробилки	14
3.3. Определение конструктивныхи	
технологическихпараметровдробилки163.3.1.Ходподвижной щеки	15
3.3.2. Числооборотовэксцентриковоговала дробилки	15
3.3.3. Производительностьщековойдробилки	16
3.3.4. Мощностьпривода дробилки	17
3.4. Выбори расчеткинематической схемы привода дробилки	18
3.5. Определениенагрузоквэлементахдробилки	19
3.6. Расчет основныхдеталейдробилкина прочность	22
3.6.1. Расчет станины	22
3.6.2. Расчетподвижной щеки	23
4. ОХРАНАТРУДАИ ТЕХНИКА БЕЗОПАСНОСТИ	26
4.1. Инструкцияпотехнике безопасности приработе	
ВЫВОДЫ	29
БИБПИОГРАФИЧЕСКИЙСПИСОК	30

ВВЕДЕНИЕ

Технологическая схемадробления припроизводстве доломитовой муки должна обеспечивать получение максимальноговых ода продуктивных фракций внастоящее время на иболее востребованной фракцией является 0-5 мм. Именно этипоказателих арактеризуют эффективность технологической схемы дробления производстве доломитовой муки.

Разработкатехнологическойсхемыдробленияявляется составной частью проектакарьераидолжнав ключать в ключаетследующие последовательные разделы:


обоснование и выбордробильногооборудования; обоснование компоновочногорешениясхемы дробления, расчеткачественно-количественнойсхемыивыбортехнологическихпараметров.

1.ОБЗОРКОНСТРУКЦИЙУСТАНОВОК ДЛЯ ДРОБЛЕНИЯ ИЗВЕСТНИКА

Анализмногочисленных схемдробилок для дробления горных породпоказывает, чтовы борира счетка чественно-количественной схемы производит либофирма-изготовительо борудования на основании технического задания казчика, либопроектирующая организация на основании типовой схемы, принятой на аналогичных предприятиях.

Основные схемыконструкцийдробилокможноразделитьна 3 основные группы:

- 1. щековые;
- 2. роторная;
- 3. конусные.

а-щековые дробилки; б-вибрационные дробилки; в-конусные дробилки. Рисунок 1.1-Основные схемы конструкций дробилок.

3a-

На рисунке 1.2показана щековая дробилка PE-150×250.

Рисунок1.2-Щековая дробилкаРЕ-150×250.

Принципработыщековойдробилкиоснованнасжатиирабочимиповерхностями(щеками)материала, чтоприводитквозникновению больших напряженийсжатияисдвига, разрушающих материал. Однаиз щек дробилки делаетсянеподвижной. Втораящека крепится нашату необеспечивающем перемещениеверхнегокраящекитак, чтощека совершает качающееся движение. Вал шатунаприводитсявовращение черезклиноременную передачуот двигателя (электрический, дизельный). Наэтомжевалукрепитсявторойшкив, играющий рольмаховикаипротивовесадляосновногошкива. Нижнийкрайподвижной щекиимеетвозможностьрегулировкиположения в горизонтальном направлении(механическийприводилигидравлическийпривод),котороевлияетнаширинуминимальнойщели, определяющую максимальную крупность материала навыходеиздробилки. Щекиобразуютклинообразнуюформукамерыдроблениявкоторойматериалподдействиемсилытяжестиипослеразрушенияпродвигаетсяотверхнейчасти, вкоторуюзагружаются крупные куски, довыходной(разгрузочной)щели. Боковыестенкив процессе дробления неучаствуют. Сейчасприменяютщековыедробилкипростогоисложногокачениящеки.В последнихдробилкахдостигаетсяболеевысокаястепеньнагрузкинаматериал (большиенапряжениясдвига). Одноизотносительнонедавнихновшеств—это виброщековыедробилки, которые должны найтиприменениена очень прочных материалах.

Всилубольшихнормальныхисдвиговыхнапряженийматериалвщековойдробилкеразрушается собразованием вытянутых кусков: пластин—содержание которых в дробленном материалем ожет достигать большого количества (впроцентном отношении помассе) от 25 до 50%. Поэтом уматериал поодном уизхарактерных направлений проходит черезразгрузочнующель, апо двум другим может превышать размерщели. Поэтом у, еслишири наразгрузочной щели задана и размера 1.5 * D, а 100% материала должнобыть меньше 2 * D. Обычная степень сокращения крупностиматериала в щековой дробил кесоот ветствует 2-3 (уменьшение средней крупностив 2-3 раза). Реальные характеристики работы щековой дробилки и дробленногом атериала зависятот свой ствисходногом атериала, егопроисхож дения (геологии) и способа добычи.

Наиболеенадежнымиидешевымивэксплуатацииоказалисьтриразновидности щековыхдробилок:

щековая дробилка спростым движениемщеки, щековая дробилка сосложным движением, щековая дробилка сроликом (дробилкасерии «ЩЕDR»).

Щековыедробилкиприменяютсянаразличныхпрочныхихрупкихматериалахвпромышленностипопереработкепервичнойгорнойпороды,производствестроительногокамняищебня,вметаллургиинашлакахи,конечно,в лабораторныхусловиях. Крупностьпитанияможетдостигать 1500мм. Длительнаяпромышленная эксплуатация дробилокпозволяет заранееговоритьо крупностидробленногопродуктав зависимостиотвыставленной шириныразгрузочной щели. Работащековой дробилких орошопрогнозируется. Материал вдробилкуможет поступать сестественной влажностью, нормальная работа происходит привлажностиматериала доб-8%. Щековые дробилки простыв обслуживании и эксплуатации. Последробления материал подлежитразделению на классифицирующем оборудовании покрупностям готовых фракций.

Широкопредставленыщековыедробилкистационарногоимобильного исполнения (нагусеничномиликолёсномшасси). Длящековой дробилкистационарногоисполнения требуется специальный фундамент.

Таккакдробленныйматериалможетсодержатьбольшуюмассупластин илещадныхзерен(до50%),тодлязадачполучениядробленногопродуктас высокимитребованиямикформезеренщековыедробилкинаходятприменение тольконапервойивторойстадияхдробления. Готовыйпродуктполучаетсяна конусныхилироторныхдробилках (молотковых, ударно-отражательныхили центробежно-ударныхдробилках).

Рабочимиэлементамищековыхдробилокявляютсядвещеки(рисунок 1.3):неподвижная 1 икачающаяся 2. Щекиобразуютпасть. Материалпоступаетвпасть сверху. Присближении щеккускиматериаларазрушаются, апри расхождении измельченный материалвысы пается черезнижнюющель пасти.

Подвижнующекуподвешиваютнаосизаверхнийконец, какпоказанона рис. 1.3, а, б, ви е, либоза нижний рис. 1.3, г ид.

Приверхнемподвесенаибольшийразмахсовершаетнижнийконецподвижнойщеки. Ширинащеливпроцессеработыдробилкиизменяется. Гранулометрическийсоставвыходящегочерезэтущельизмельченногоматериала различен.

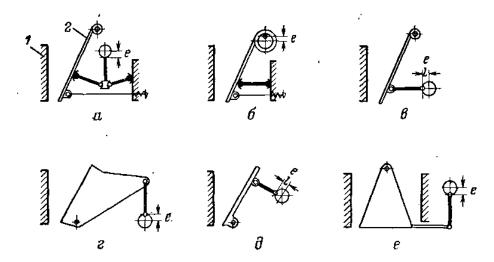


Рисунок 1.3-Варианты подвеса ипривода подвижнойщеки:

а-верхнийподвесивертикальныйшатун; б-верхнийподвесна эксцентриковомвалу; в-верхнийподвесигоризонтальныйшатун; г-нижнийподвеси вертикальныйшатун; д-нижнийподвесигоризонтальныйшатун; е-верхний подвесдвусторонней щеки и вертикальный шатун.

Конусная Дробилка Symons широкоприменяются вразличных областях камнедробления повсемумиру в течение последних трех десятилетий. Конусная дробилка Symons разработа на Шанхайской компанией Zenith на основании многолетнего опытаи развития ...

Рисунок1.4-Конусная Дробилка Symons.

2.ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКОЙЛИНИИ ПО ПРОИЗВОДСТВУДОЛОМИТОВОЙ МУКИ

Привыборедробильногооборудования учитываются толькод вафактора -размермаксимального куска, поступающего в дробилку, ирасчетная производительность. Такиехарактеристики, кактипгорной породы, е е прочностные характеристики, гранулометрический состав продукта, поступающего на дробление, не учитываются.

Подобныйподходкпроектированию дробильно-сортировочных комплексов приводитктому, что фактические показателира боты дробильно-сортировочных комплексов несоответствуют проектным, ДСК работают в неоптимальных режимах, что в большинствеслучаевся за носвысок имвыходом отсева дробления инизким качеством производимого щебня.

Вэтойсвязисовершенствованиеметодикирасчетатехнологическихсхем дроблениягорныхпороднащебеньявляетсяважнойнаучнойипрактической задачей.

Врезультатеанализаработыдробильно-сортировочных комплексов выделены двегруппы факторов, приводящие кнесоответствию фактических показателейработы ДСК проектным данным.

Факторыпервойгруппы-допущения, принятые впроекте. Кихчислу относятся следующие.

однаитажесхемапредлагаетсядляпородсразнымпределомпрочности сжатие;

привыборетехнологическойсхемы (числостадий дробления, компоновочноерешение) неучитывается тип горной породы;

неучитываетсяфактическийгранулометрическийсостависходнойпороды,поступающей на дробление первойстадии.

прирасчетесхемыгранулометрическийсоставдробленогопродукта определяетсяпотиповымхарактеристикамкрупностидляданноймодели(типоразмера)дробилки и размера разгрузочной щелибезучета свойств породы.

на

Факторывторойгруппы-отклоненияотпроектных технологических параметров при эксплуатации.

Проведеннымиисследованиями установленоследующее:

выходотдельныхфракцийщебняиотсевадроблениянаходитсявпрямой пропорциональнойзависимостиотпределапрочностинасжатие, чтонеобходимоучитыватьпри выборе параметровдробилок;

гранулометрическийсоставгорнойпороды,поступающейнадробление, зависитнетолькоотпределапрочностинасжатие,ноиотспособавыполнения взрывныхработ. Установленызависимостигранулометрическогосоставагорноймассыиосновных параметровтехнологии взрывадляразличных типовпород;

некоторыефизико-механическиесвойстващебня (вчастности, прочность иморозостойкость), характеризующиеегокачество, зависятоттехнологических параметров дробления. Вчастности, показано, чтоморозостойкость и прочность щебня зависитот количествами кротрещин, образованных врезультате дробления. Этотфактне обходимоучиты вать привыбореком поновочного решения схемы дробления итипоразмеров дробилок второй итретьей стадий, что особенноважно для низкопрочных пород;

обоснованыфакторы, являющиеся информативными характеристикам типапороды при дроблении;

показанапринципиальнаявозможностьпереходанадвухстадиальную схемудробления для некоторыхтиповпород.

Врезультатеанализаиобобщенияполученных зависимостей предложеныварианты компоновочных решений технологических схемдробления для горных породразличных типов, характеризующих сяразличными физикомеханическими свойств.

1. Получение кубовидногощебня с дробилкой ДЦ.

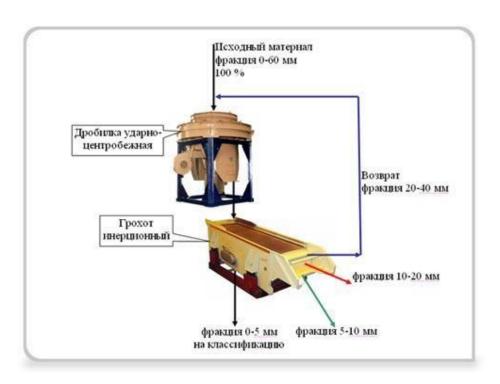


Рисунок2.1—Технологическая схема получения кубовидного щебня с дробилкой ДЦи конусной дробилкой сисходный материал фракции 0-60 мм.

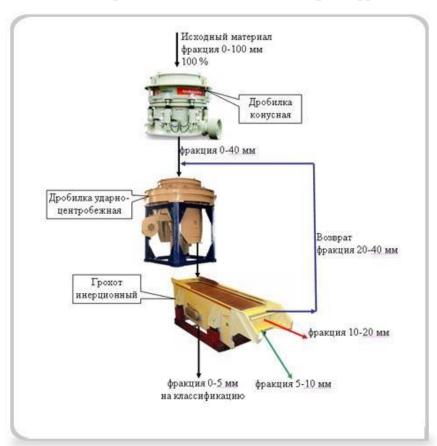


Рисунок2.2—Технологическая схема получения кубовидного щебня с дробилкой ДЦи конусной дробилкой сисходный материал фракции 0-100 мм.

Получениекубовидногощебнясдробилкой ДЦ, конусной ищековой дробил-кой

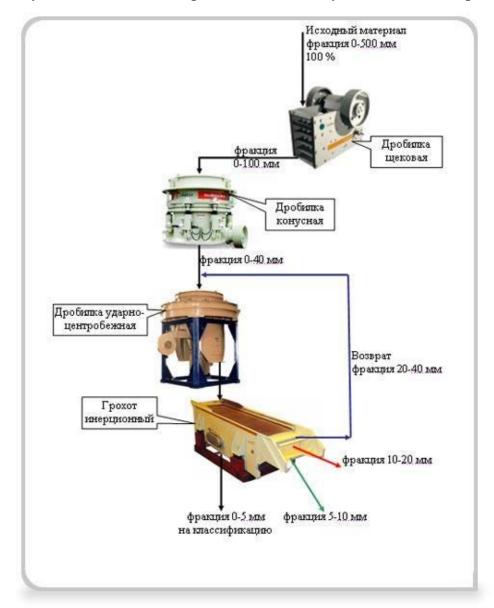


Рисунок2.3—Технологическая схема получения кубовидного щебня с дробилкой ДЦи конусной дробилкой сисходный материал фракции 0-500 мм.

Заосновутехнологическойлиниипопроизводствудоломитовоймукиберемсхемупредставленнуюнарисунке 2.3, вкоторуювносимнекоторые изменения.

Длядоломитноймуки, которуюможноиспользовать для известкования почвыгодится фракцияразмеромнеболее 8...10мм. Поэтому фракцииразмеромболее 10ммотправляются обратнов ударно-центробежную дробилку.

3. ПРОЕКТИРОВАНИЕЩЕКОВОЙДРОБИЛКИ

3.1. Выбортипоразмерадробилки

Исходные данные:

Максимальная крупностьисходной горной породы— 700мм;

Максимальная крупностьпродукта дробления— 100мм;

Физико-механические свойствагорнойпороды:доломит

$$\sigma = 180 M\Pi a, E = (6...7) \cdot 10^4 M\Pi a$$

Главнымипараметрамищековойдробилки, определяющимиеётипоразмер, являютсяразмерприемногоотверстия иразмервых одной щели (B xLxb).

Ширинаприемногоотверстиядолжнаобеспечитьсвободныйприемкусковмаксимальной крупности [3,c.141]:

$$B = D_{\text{max}} / 0.5$$
 (3.1)

где D_{max} – максимальный размерисходногоматериала.

$$B=0.7/0.5=1.4$$
 M

Принимаем В= 1420мм.

Длина камеры дробленияLнаходится взависимостиотВ как: L=

$$(1,2...2,3)\cdot B = 1,25\cdot 1420 = 1775$$
MM

Принимаем L= 1800мм.

Ширинаbвыходнойщелиприиспользованиистандартныхдробящих плитсвязанасмаксимальнойкрупностьюкусковвготовомпродуктезависимостью[3, с.144]:

$$b = d_{max} K_{o\kappa}, \tag{3.2}$$

где $K_{\text{ок}}$ –коэффициентотносительнойкрупностипродуктадробленияв щековых

дробилках, $K_{ok}=1,2\div1,9$.

$$b = 0.32/1.2 = 0.266$$
M

Размервыходнойщелисоставляет 20..80 ммдлядробилокмелкогодробления, 40...120 мм—длясреднегодробления и 100...250 мм—длякрупного. В нашем случае дробление— крупное.

Принимаемь =150мм.

3.2. Определениеразмеровмеханизмадробилки.

Размерыосновныхэлементовмеханизмащековойдробилкиопределяют- ся конструктивно.

Высота камеры дробления:

$$H = \frac{B - b}{tg\alpha},\tag{3.3}$$

где α -уголзахвата; $\alpha = 17^{\circ}$;

$$H = \frac{1420 - 150}{tg17^{\circ}} = 3759,6\text{MM}$$

Принимаем Н=3760мм.

Остальные размерыще ковой дробилки (рис. 2) вычислим посоотношениям, приведенным втаблице 1.

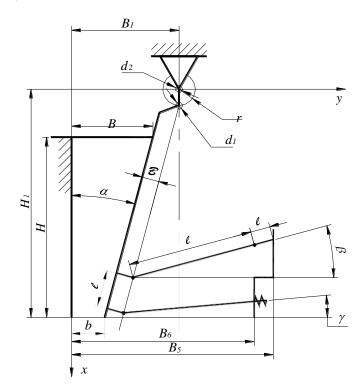


Рис.3.1-Схема механизма щековой дробилки.

3.3. Определение конструктивных и технологических параметров дробилки.

3.3.1. Ходподвижной щеки.

Оптимальныезначенияходасжатиядлящековыхдробилоксразличной кинематикойопределены экспериментально.

Для дробилок сосложнымдвижением [5,стр.28]:

Ходподвижной щеки вверху:

$$S_e = (0.06...0.03) \cdot B$$
 (3.4)
 $S_e = 0.05 \cdot 1420 = 71 \text{ mm}$

Ходподвижной щеки внизу:

$$S_H = 7 + 0.18 \cdot b$$
 (3.5)
 $S_H = 7 + 0.18 \cdot 150 = 34 \text{MM}$

Величина среднегоходаподвижной щекидробилки:

$$S_{cp} = \frac{S_{e} + S_{H}}{2}$$

$$S_{cp} = \frac{71 + 34}{2} = 52,5 \text{MM}$$
(3.6)

3.3.2. Числооборотовэксцентриковоговала дробилки.

Определим числооборотовэксцентриковоговала дробилки.

Числооборотовэксцентриковоговала дробилкиопределимпоформуле:

$$n = 0.5 \cdot K_{\pi} \quad \bullet \quad K \sqrt{\frac{g \cdot tg\alpha}{2 \cdot S}}, \tag{3.7}$$

где $K_{\text{Д}}$ –коэффициентдинамичности,дляпроектируемойдробилки $K_{\text{Д}}$ = 0,8;

К_{СТ}-коэффициент, учитывающийстесненное падение дробимогоматериала

изкамерыдробилки, $K_{CT}=(0,9\div0,95)$;

 α -уголзахвата, град;

S_н- ходподвижной щеки внизукамерыдробления, м.

$$n=0.5 \cdot 0.8 \cdot 0.9 \cdot \sqrt{\frac{9.81 \cdot tg17}{2 \cdot 0.034}} = 2.39 \text{ ob/c}$$

Оптимальноечислооборотовваладолжносоответствоватьмаксимальной производительностидробилки.

3.3.3. Производительностьщековойдробилки.

Производительностьщековыхдробилок определяется поформуле:

$$\Pi = \frac{K_{\kappa \bullet} - S \quad L \cdot b \cdot n \cdot (B+b)}{cp},$$

$$2 \cdot D_{cs} \cdot tg\alpha$$
(3.8)

где K_{κ} -коэффициенткинематики,длядробилоксосложнымдвижением K_{κ} =1; S_{cp} - среднийходподвижной щеки,м;

L- длина приемногоотверстия, м;

b -ширина выходной щели,м;

n- частота оборотовэксцентриковоговаладробилки, об/с;

В- ширинаприемногоотверстия, м;

 $D_{cв}$ — средневзвешенный размеркусковвисходном материале,м; α — уголзахвата,град.

Длядробилок, работающих нарядовой горной массе, преимущественнос шириной приемного отверстия 900 мми болеесреднев звешенный размеркусков D_{cB} можно определитьиз выражения:

$$D_{cB}=0,31 \cdot B$$

$$D_{cB}=0,31 \cdot 1420=440,2 \text{MM}$$

$$\Pi = \frac{1 \cdot 0,0525 \cdot 1,8 \cdot 0,27 \cdot 2,39 \cdot (1,42+0,15)}{=0,383 \text{m}^3/\text{c}^2 \cdot 0,4402 \cdot tg17}$$

Средневзвешенный размердробленого продукта равен:

$$d_{cb} = 0.6 \cdot b$$
 (3.10)
 $d_{cb} = 0.6 \cdot 150 = 90 \text{mm}$

3.3.4. Мощностьпривода дробилки.

Мощностьопределим поформуле:

$$N = \frac{K_{np} \cdot \sigma^{2} \cdot \pi \cdot L \cdot n}{0.01224 \cdot E \cdot \eta} \bullet \left(D_{ce}^{2} - d_{ce}^{2}\right), \tag{3.11}$$

где K_{np} -коэффициентпропорциональности, учитывающий изменения прочно- сти материалас изменениемегоразмеров, K_{np} = 0,92[7,стр.15];

σ– временное сопротивлениесжатию дробимогоматериала, МПа; L– длина приемногоотверстия дробилки, м;

n- частота вращения эксцентриковоговала, с⁻¹;

Е- модуль упругости материала, МПа;

 D_{cB} и d_{cB} —средневзвешенный размерсоответственнои сходногоматериалаи продукта дробления, м;

 η – механический КПД привода, η =0,8÷0,9 [7,стр.15].

$$N = \frac{0.92 \cdot 180^{-2} \cdot 3.14 \cdot 1.8 \cdot 2.39}{0.01224 \cdot 60000 \cdot 0.9} \left(0.4402^{2} - 0.9^{2} \right) = 89.63 \,\text{kBt}$$

Установочнаямощность электродвигателей длящековых дробилок достаточноблизкак фактической. Поэтомувыбираем асинхронный трех фазный закрытый обдуваемый двигатель 4A355S10У3. Параметры двигателя:

- мощность N=90кВт;
- номинальнаячастота вращения п=575 об/мин;

3.4. Выбори расчеткинематической схемы привода дробилки

Общее передаточное отношение определяется извыражения:

$$i_{o\delta u_{i}} = \frac{n_{os}}{n} \tag{3.12}$$

где п_{лв}-числооборотовэлектродвигателя;

n- числооборотовэксцентриковоговала.

$$i_{oбиц} = \frac{575}{143.4} = 4.01$$

Полученное значение округляем достандартногоіобщ=4.

Определяем типремняподиапазонупередаваемой мощности:типД [8,стр.83].

Максимальный диаметр шкива D₁=630 мм.

$$V = \frac{D_i \cdot \pi \cdot n_{\partial s}}{60},\tag{3.13}$$

$$V = \frac{0.8 \cdot 3.14 \cdot 575}{60} = 24.073 \text{ m/c}$$

Мощность, передаваемая одним ремнем $N_0 = 34,7 \text{ кBt}$.

Диаметры шкивовопределяются из соотношения:

$$i_{oбu_{i}} = \frac{D}{D_{i}}$$
(3.14)

Определим диаметрведомогошкива.

$$D = i_{o \delta u} \cdot D_1$$

$$D = 4.630 = 2520$$
_{MM}

Расчетные параметры дробилки:

$$W=\pi \cdot (D_2+D_1)=3,14\cdot (2520+630)=9891 \text{MM}$$

$$Y=(D_2-D_1)^2, \qquad (3.15)$$

 $Y = (2520-630)^2 = 3572100 \text{mm}^2$.

Определяем длинуремня:

$$L_p=2\cdot 1+W/2+Y/41,$$
 (3.16)

где 1-ориентировочное межосевое расстояние,мм.

$$l = 0,55(d_2+d_1)+h$$

$$l = 0,55(2520+630)+40=1772,5 \text{MM}$$
(3.17)

$$L_p = 2.1772, 5 + 9891/2 + 3572100/(4.1772, 5) = 8994,32 \text{mm}$$

Определяем поГОСТ-1284-68доближайшегозначенияL=9000мм.

Межосевое расстояние:

$$A = \frac{1}{2} \cdot L - W + \sqrt{[2 \cdot L_p - W]^2 - 8 \cdot Y}$$

$$A = \frac{1}{8} \cdot 2 \cdot 9000 - 9891 + \sqrt{[2 \cdot 9000 - 9891]^2 - 8 \cdot 3572100} = 1775,81_{\text{MM}}$$
(3.18)

Находим уголобхвата малогошкива:

$$\alpha_{1}=180^{\circ}-57^{\circ}(d_{2}-d_{1})/A_{p} \tag{3.19}$$

$$\alpha_{1}=180^{\circ}-57^{\circ}(2520-630)/1775,81=119,34^{\circ}\approx120^{\circ}$$

Мощность, передаваемая одним ремнем сучетом условийработы:

$$N_p = N_0 \cdot k_1 \cdot k_2,$$
 (3.20)

где k_1 – коэффициент, учитывающий уголобхваташкива, k_1 = 0,86;

k₂- коэффициент, учитывающий условияработы, k₂=0,87.

$$N_p=34,7\cdot0,86\cdot0,87=25,96$$
 кВт.

Количество необходимыхремней:

$$Z = 90/25.96 = 3.47$$

Округляем количество ремней до4.

3.5. Определениенагрузоквэлементахдробилки.

Силовойрасчетдробилкисостоитвопределениивнешнихнеизвестных сил, действующих назвенья механизма, атакжесил взаимодействия звеньев местахих соприкосновения, тоесть реакций вкинематических опорах.

Усилие, приходящееся надробящую плиту, тоесть усилие дробления Р,

определяется поформуле:

$$P = p \cdot F_{\partial poo}, \tag{3.21}$$

 $где F_{дроб}$ — активнаяплощадьдробящейплиты (рабочая поверхностьплитыбез скосов),м 2 ,определяется изконструктивной схемы

$$F_{\text{IID}} = H \cdot L = 6768000 \text{ Mm}^2$$
;

p–удельное усилиедробления, H/M^2 .

Значениеррекомендуется определять узвыражения: $p = \frac{1,85}{|1,85+|} \cdot K$

$$p = \begin{cases} & \cdot |1,85 + {}^{0,25}| \cdot K \\ & \cdot \\ & \frac{}{300} \left(\begin{array}{c} & \\ & R \end{array} \right) \\ & \alpha \end{cases}$$

$$(3.22)$$

где σ -пределпрочности(временноесопротивлениесжатию)исходной горной породы на сжатие, H/m^2 ;

 K_{α} -коэффициент, учитывающийизменениервзависимостиотизменения

угла захватадробилки прри
$$\alpha = 17^{\circ}$$
 Ку, $2\overline{5}$ 1,14[7, стр.18].
$$p = \begin{array}{c} |1.85 + \\ \hline 300 \end{array} \begin{array}{c} |1.14[7, \text{ стр.18}] \\ \hline 1.14[7, \text{ стp.18}] \\$$

$$P = 1,386 \cdot 10^6 \cdot 6,768 = 9,38$$
MH

Расчетное(максимальное)значениеусилиядробленияпринимаетсяс учетом коэффициента запасана случайпопаданиянедробимыхтел:

$$P_{max} = K_{3an} \cdot P, \tag{3.23}$$

где $K_{3ап}$ —коэффициентзапаса, $K_{3ап}$ = 1,4÷1,5.

$$P_{max} = 1,4.7,88 = 13,132$$
MH

Равнодействующаясилдроблениядлядробилоксосложнымдвижением щекиориентировочноприкладываетсявточке,расположеннойнарасстоянии (0,3÷0,4)Нотнизакамерыдробления,инаправленаперпендикулярнокбиссек- трисе угла захвата.

Схемадействующихусилийвэлементахдробилкипоказананарисунке

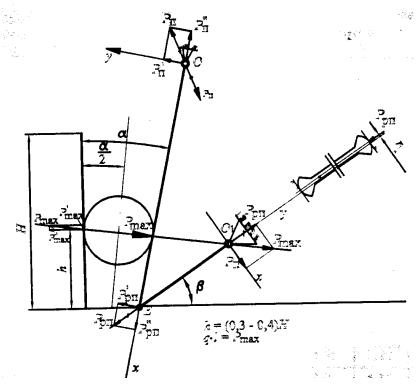


Рисунок3.2-Расчетная схема щековойдробилки.

Составляядалееуравненияравновесиясилотносительновыбраннойсистемыкоординат, найдемнеизвестные усилия, действующие в элементах дробилки.

$$P_{pn} = P_{max} \cdot cos\psi \quad , \tag{3.24}$$

где ψ —уголмеждуположительнымнаправлениемосипроекцииивектором проектируемой силы.

$$P_{pn} = 13,132 \cdot \cos \left(20^{\circ} + \frac{17}{2} \right) = 11,54 \text{MH}$$

$$P_{n} = P_{max} \cdot \cos(90 - \psi)$$

$$P_{n} = 13,132 \cdot \cos \left(90^{\circ} - 20^{\circ} - \frac{17}{2} \right) = 6,27 \text{MH}$$
(3.25)

3.6. Расчет основных деталей дробилки на прочность.

Вседеталидробилкидолжнывыдерживатьбезполомокибольшойдеформациитемаксимальныеусилия, которыевних развиваются принормальработе.

ной

Прочностнойрасчетщековыхдробилоксводитсякопределениюдействующихвдеталяхмашинынапряженийисравнениюихсдопускаемыми напряжениямидляматериалаэтихдеталей.

3.6.1. счетстанины.

Приработедробилкипоперечныестенкистанинывоспринимаютнагруз-киотдробящихщек.

Станинудробилкирассчитываюткакжесткуюраму,передняяизадняя стенкикоторойравномернонагруженынагрузкой $P_{\text{max.}}$,вжесткихуглахкоторойприизгибевозникаютопорныемоменты M_{o} . Поперечныестенкистанины рассматриваются какбалкинадвухопорах, нагруженные силой Qистатически неопределимым моментом M_{o} . Продольные стенкистанинырассматриваются какбалки, нагруженные наконцах моментом M_{o} . Благодаряжест костисое динения приизгибестеноких углыповоротов θ_{1} и θ_{2} будутодинаковы, причем каждый изних равенопорной реакции от фиктивной нагрузкистенки, площади эпюры моментов, деленной на жест кость стенки (ЕЈ).

Для поперечной стенкификтивнаянагрузка [5, стр. 36]:

$$F = \frac{P_{max} \cdot l_3 \cdot l_3}{4} - \frac{1}{2} M_0 l_3$$
 (3.26)

Изданной формулы получим момент(Нм):

$$M_0 = \frac{P_{max} \cdot l_3^2}{8} \cdot \frac{1}{l_3 + l_4 - \sqrt{JJ_1}}$$
 (3.27)

Наибольший изгибающиймоментвпоперечной стенке (Нм):

$$M_{y32} = P_{max} \cdot l_3 /4 - M_0 \tag{3.28}$$

Напряжение впоперечной стенке (Па):

$$\sigma_{u3z} = M_{u3z} / W_{I} \le \left[\sigma\right] \tag{3.29}$$

Напряжение впродольной стенке (Па):

$$\sigma = M_0 / W_2 + P_{max} / (2F) \le \left[\sigma \right] \tag{3.30}$$

В приведенныхформулах:

 $l_3 u l_4 -$ длины поперечнойи продольнойстенок соответственно,

$$l_3 = 2800 \text{MM}, l_4 = 4600 \text{MM}; J_1$$

 $иJ_2$ –моментыинерциипоперченнойипродольнойстеноксоответственно, J_1 = 6, $3 \cdot 10^9$ мм⁴, J_2 = 7, $875 \cdot 10^9$ мм⁴;

 W_1 и W_2 -моменты сопротивления поперечной и продольной стенок, соответственно, W_1 = $42\cdot10^6$ мм 3 , W_2 = $52,5\cdot10^6$ мм 3 .

$$M_{0} = \frac{13,132 \cdot 10 \cdot 2,8}{8} \frac{1}{2,8 + 4,6 \cdot 7,875 \cdot 10^{9} / 6,3 \cdot 10^{9}} = 1,505 \text{ MH·м}$$

$$M_{u3z.max} = 13,132 \cdot 10^{6} \cdot 2,8 \quad /4 - 1,505 \cdot 10^{6} \quad = 7,687 \text{MH·м}$$

$$\sigma_{u3z} = 7,687 \cdot 10^{9} \quad /42 \cdot 10^{6} \quad = 183,03 \leq 550 \text{M}\Pi \text{a}$$

$$\sigma = 1,505 \cdot 10^{9} \quad /52,5 \cdot 10^{6} + 13,132 \cdot 10^{6} \quad /(2 \cdot 1,05 \cdot 10^{6}) = 34,92 \leq 550 \quad \text{M}\Pi \text{a}$$

3.6.2. Расчетподвижной щеки.

Расчетная схема подвижной дробящей щеки дробилки сосложным движением щеки приведена на рисунке бипредставляет собой балку, опирающую ся с одной стороны на распорную плитуи сдругой наплиту, закрепленную на шарнире. Каквиднои з схемы, подвижная щека подвергает ся изгибу и растяжению.

Длядробилоккрупногодроблениянагрузку,передающуюсянащекусо стороныдробящейплиты,можноприниматьсосредоточенной.

Суммарное напряжение в рассматриваемом сечении определяется по формуле:

$$\sigma = \sigma_u \pm \sigma_p \le [\sigma] \tag{3.31}$$

Напряжения отизгиба определяютсяпоформуле:

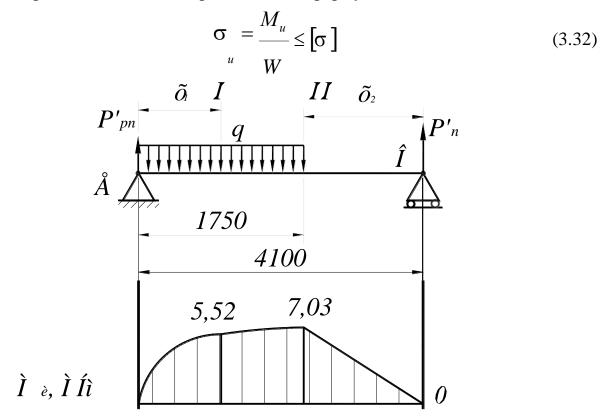


Рисунок3.3-Расчетная схемаподвижной щеки дробилки.

Научастке Іизгибающий моментизменяется позакону квадратной параболы:

$$M_{I} = P_{pn}^{/} \bullet_{I} - \mathbf{N} \cdot \frac{x_{I}^{2}}{2}$$

$$q = \frac{P_{max}}{l}$$

$$q = \frac{13,132}{l,5} = 8,76 \text{MHM}$$

$$M_{I} = 11,54 \cdot \cos 28,5^{\circ} \cdot 0,875 - 8,76 \cdot \frac{0,875}{2} = 5,52$$

$$M_{I} = 5,52$$

Научастке Пизгибающиймоментизменяется полинейномузакону:

$$M_{II} = P_n^{\prime} \bullet \qquad x \tag{3.34}$$

$$M_{II} = 6,27 \cdot cos61,5^{\circ} \quad \cdot 2,35 = 7,03 \text{MHm}$$

Максимальныйизгибающиймоментбудетвсечении,гдепоперечнаяси- ла равнанулю.

Напряжениеотрастяженияопределяется поформуле:

$$\sigma_p = \frac{P_{pn}}{F},\tag{3.35}$$

где F-площадьрасчетногосечения.

$$\sigma_p = \frac{11,54}{1} = 11,54$$
 MIIa.

4. ОХРАНАТРУДАИ ТЕХНИКА БЕЗОПАСНОСТИ

4.1. Инструкцияпотехнике безопасности приработе.

Общие требования.

Кработедопускаютсялицанемоложе 18-тилет, прошедшиемедицинскуюкомиссию на допусккработе и прошедшие инструктаж потехнике безопасности;

Соблюдатыправилапообеспечениюпожаро и взрывобезопасности;

Рабочийдолжен уметьоказыватьпервуюдоврачебнуюпомощь;

За несоблюдение требованийинструкции рабочий несетответственность.

Требованиябезопасности передначалом работ.

Передначаломработрабочийобязан одетьспецодежду;

Долженпроверитьисправностьоборудования, приспособленийиинструмента, ограждений, сигнализации, заземления, местногоосвещения и т.п.

Ответственность заработуустановок, наладкуина блюдение за ихтехнической эксплуатацией, приказом директора предприятия должна возлагаться на одногоизинженерно—технических работников;

Требованиебезопасности вовремя работы.

Следитьзапоказаниямиприборов;

Незалезатьзазащитные ограждения и подзащитные кожухивовремя работы оборудования.

Ежедневноинеоднократнопроизводитьочисткуоборудованияпомере ихзасорения;

Требованиябезопасности ваварийных ситуациях.

Привозникновенииаварийнойситуациинемедленноотключитьоборудованиеи прекратитьработу;

Приполучениитравмыоказатьпервуюмедицинскуюпомощьисообщитьруководствупредприятия.

Требованиябезопасности поокончанииработ.

Отключитьоборудование;

Произвестиочисткуи техническийосмотр оборудования;

Сдатьв техническиисправном состоянии оборудование;

Снятьспецодежду, вымытьлицои руки;

Сообщитьначальникуфермыобокончанииработионедостатках,обнаруженных вовремяработы.

Мероприятия пожаровзрывобезопасности.

Дляобеспеченияпожаровзрывобезопасностинеобходимовыполнятьследующие требования:

Использованиеоткрытогоогняикурениеврабочейзонекатегорически запрещено;

Применениенеисправныхэлектроприборовзапрещается;

Лица, ответственные засостояние электроустановок, обязаные истематических онтролировать состояние аппаратов защиты отперегрузок, коротких замыканий идругих ненормальных режимовработы;

Поверхностиоболочексвысокойтемпературойприработедолжныбыть отгороженыотслучайногосоприкосновенияснимивоизбежаниеполучения ожогов;

Светильникидляосвещенияпомещенийдолжныиметьзащитныеколпаки.Степеньзащитыотвоздействияокружающейсреды(ГОСТ14254-80) должнабыть1Р54....1Р64;

Временныеогневыеработыдолжныпроводитьсявсоответствиис "Инструкцией поорганизации безопасного проведения огневых работв зданиях и сооружениях в зрыво пожароо пасных производств, согласованной с Федеральным горным и промышленным надзором России II. 06.96 г№ 02—35/263 и Главным управлением Государственной противо пожарной службой МВДРФ 4.06 96 г. № 20/2.1./1339;

Производственные помещения должны быть укомплектованы средствами пожаротушения, атакже автоматической пожарной сигнализацией.

ВЫВОДЫ

Входевыполнениякурсовойработыбылпроизведенлитературный анализсуществующих технологий попроизводствудоломитовой мукиитехнологии дробления горных пород.

Разработанный проект попроизводствудоломитовой муки от вечает последним требования мвтехнологи и производства, что существенно позволит повысить качествовырабатываемой продукции, уменьшить еесебестоимость, улучшить условиятруда, а также уменьшить загрязнение окружающей среды.

Пристроительстветехнологическойлиниипопроизводствудоломитовой мукиможнобудетповысить качествоиснизить себестоимость, чтопринесет предприятию дополнительную прибыль.

Спроектированнаящековаядробилкаимеетнебольшиегабаритныеразмеры,простоймеханизмдробленияивысокиетехнико-экономическиепоказателипосравнениюссуществующимиконструкциями,чтоделаетегоиспользованиеболее выгодным.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. БарсовИ.П.Строительные машины и оборудование. М.: Стройиздат, 1978.
- 2. Гальперин М.И., Домбровский Н.Г. Строительные машины: Учебник для вузов. – М.: Высшая школа, 1980.
- 3. Дорожно-строительные машиныи комплексы:Учебник длявузов/Подобщей редакциейВ.И.Баловнева.— М:Машиностроение,1988.
- 4. Крутницкий И.Н.Справочник построительным машинам иоборудованию.— М.:Воениздат, 1980.
- 5. СергеевВ.П.Строительные машиныи оборудование: Учебник для вузов.-М.: Высшая школа, 1987.
- 6. Строительные машины:Справочник в двухтомах.-М.: Машиностроение,1991.
- 7. Строительные дорожные машины: Методические указания к выполнению курсового проекта: Учеб.-метод. пособие. Череповец: ГОУ ВПОЧГУ, 2006.
- 8. ШейнблитА.Е.Курсовое проектирование деталей машин:Учебноепособие. М.:Высшая школа, 1991.